Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1281
Preview
$$U_{1281}(x, y) = \frac{\left(1 - \sqrt{- 4 x \left(y + 1\right)^{3} + 1}\right)^{3}}{8 x^{3} \left(y + 1\right)^{6}}$$
Pyramid 1282
Preview
$$U_{1282}(x, y) = \frac{2 y + \sqrt{4 y^{2} + 1}}{\left(1 - x\right)^{3}}$$
Pyramid 1283
Preview
$$U_{1283}(x, y) = \frac{\left(1 - y\right)^{4} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{2}} + 1}\right)^{3}}{8 x^{3}}$$
Pyramid 1284
Preview
$$U_{1284}(x, y) = \frac{\left(1 - y\right)^{6} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}\right)^{3}}{8 x^{3}}$$
Pyramid 1285
help
Preview
$$U_{1285}(x, y) = \frac{\sqrt{4 x + 1}}{\left(1 - y\right)^{3}}$$
Pyramid 1286
Preview
$$U_{1286}(x, y) = \frac{y + 1}{\sqrt{- 4 x \left(y + 1\right)^{2} + 1}}$$
Pyramid 1287
Preview
$$U_{1287}(x, y) = \frac{8 y^{6} \left(1 - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}\right)^{3}}{x^{3} \left(1 - \sqrt{1 - 4 y}\right)^{6}}$$
Pyramid 1288
Preview
$$U_{1288}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2} \sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}}{4 y^{2}}$$
Pyramid 1289
Preview
$$U_{1289}(x, y) = \frac{2 y^{8} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}\right)^{3}}{x^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{4}}$$
Pyramid 1290
Preview
$$U_{1290}(x, y) = \frac{8 y^{12} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1}\right)^{3}}{x^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{6}}$$
Pyramid 1291
Preview
$$U_{1291}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}}}{4 - 4 x}$$
Pyramid 1292
Preview
$$U_{1292}(x, y) = \left(y + 1\right)^{2} \sqrt{4 x \left(y + 1\right) + 1}$$
Pyramid 1293
Preview
$$U_{1293}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}}{8 y^{3}}$$
Pyramid 1294
Preview
$$U_{1294}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{8 y^{3}}$$
Pyramid 1295
Preview
$$U_{1295}(x, y) = \sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}$$
Pyramid 1296
Preview
$$U_{1296}(x, y) = \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}$$
Pyramid 1297
Preview
$$U_{1297}(x, y) = \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}$$
Pyramid 1298
Preview
$$U_{1298}(x, y) = \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{y} + \sqrt{\frac{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}} + 1}$$
Pyramid 1299
Preview
$$U_{1299}(x, y) = \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + \sqrt{\frac{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}$$
Pyramid 1300
Preview
$$U_{1300}(x, y) = \frac{\frac{\sin{\left(\frac{\operatorname{asin}{\left(216 y^{2} - 1 \right)}}{3} \right)}}{6 y} + \frac{1}{12 y}}{1 - x}$$
Page:
1
...
62
63
64
65
66
67
68
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less