Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1261
Preview
$$U_{1261}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}} + 1\right)^{3}}$$
Pyramid 1262
Preview
$$U_{1262}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + 1\right)^{3}}$$
Pyramid 1263
Preview
$$U_{1263}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{2 y}$$
Pyramid 1264
Preview
$$U_{1264}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{3}}$$
Pyramid 1265
Preview
$$U_{1265}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{3}}$$
Pyramid 1266
Preview
$$U_{1266}(x, y) = \frac{1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}}{2 x}$$
Pyramid 1267
Preview
$$U_{1267}(x, y) = \frac{1 - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{2 x}$$
Pyramid 1268
Preview
$$U_{1268}(x, y) = \frac{1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}}{2 x}$$
Pyramid 1269
Preview
$$U_{1269}(x, y) = \frac{1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1}}{2 x}$$
Pyramid 1270
Preview
$$U_{1270}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}} \left(x + 1\right)}{4}$$
Pyramid 1271
Preview
$$U_{1271}(x, y) = \left(y + 1\right) \sqrt{4 x \left(y + 1\right) + 1}$$
Pyramid 1272
Preview
$$U_{1272}(x, y) = \frac{\left(1 - \sqrt{- 4 x \left(y + 1\right)^{3} + 1}\right)^{2}}{4 x^{2} \left(y + 1\right)^{3}}$$
Pyramid 1273
Preview
$$U_{1273}(x, y) = \frac{\left(1 - y\right)^{3} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1}\right)^{2}}{4 x^{2}}$$
Pyramid 1274
Preview
$$U_{1274}(x, y) = \frac{y^{2} \left(1 - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}} + 1}\right)^{2}}{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{2}}$$
Pyramid 1275
Preview
$$U_{1275}(x, y) = \frac{2 y^{3} \left(1 - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}\right)^{2}}{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{3}}$$
Pyramid 1276
Preview
$$U_{1276}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{8 y^{3}}$$
Pyramid 1277
Preview
$$U_{1277}(x, y) = \frac{y^{4} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}\right)^{2}}{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}$$
Pyramid 1278
Preview
$$U_{1278}(x, y) = \frac{2 y^{6} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1}\right)^{2}}{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}$$
Pyramid 1279
Preview
$$U_{1279}(x, y) = \frac{\left(1 - \sqrt{- 4 x \left(y + 1\right) + 1}\right)^{3}}{8 x^{3} \left(y + 1\right)^{2}}$$
Pyramid 1280
Preview
$$U_{1280}(x, y) = \frac{2 y + \sqrt{4 y^{2} + 1}}{\left(1 - x\right)^{3}}$$
Page:
1
...
61
62
63
64
65
66
67
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less