Generating function
$$U_{1290}(x, y) = \frac{8 y^{12} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1}\right)^{3}}{x^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{6}}$$
Explicit formula
$$T_{1290}(n, m, k) = \frac{9 k \left(k + n\right) {\binom{3 k + 2 n - 1}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{\left(3 k + n\right) \left(3 k + m + 3 n\right)}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
3 | 36 | 27 | 1632 | 8721 | 43092 | 201894 |
9 | 162 | 1701 | 13662 | 9315 | 56862 | 3206385 |
28 | 672 | 9072 | 90944 | 75516 | 5499648 | 36358784 |
9 | 27 | 4455 | 5355 | 524475 | 4441554 | 3372291 |
297 | 10692 | 208494 | 292248 | 32987493 | 318610908 | 2733479298 |
1001 | 42042 | 945945 | 15149134 | 193645452 | 210125916 | 20107882795 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1290?