Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1321
Preview
$$U_{1321}(x, y) = \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{4}}{8 y^{4}} + \sqrt{\frac{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{8}}{64 y^{8}} + 1}$$
Pyramid 1322
Preview
$$U_{1322}(x, y) = \frac{128 y^{20} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{2 y^{4}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1} + 1\right)^{3}}{x^{6} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{10}}$$
Pyramid 1323
Preview
$$U_{1323}(x, y) = \frac{4096 y^{30} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1} + 1\right)^{3}}{x^{6} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{15}}$$
Pyramid 1324
Preview
$$U_{1324}(x, y) = \frac{\left(y + 1\right)^{5}}{- x y - x + 1}$$
Pyramid 1325
Preview
$$U_{1325}(x, y) = \frac{- x - 2 y - \sqrt{x^{2} - 2 x - 4 y + 1} + 1}{2 x y + 2 y^{2}}$$
Pyramid 1326
Preview
$$U_{1326}(x, y) = \frac{1 - \sqrt{- 4 x y^{6} - 24 x y^{5} - 60 x y^{4} - 80 x y^{3} - 60 x y^{2} - 24 x y - 4 x + 1}}{2 x y + 2 x}$$
Pyramid 1327
Preview
$$U_{1327}(x, y) = x + y^{2} + y$$
Pyramid 1328
Preview
$$U_{1328}(x, y) = x y^{2} + x y + \left(y^{2} + y\right)^{2}$$
Pyramid 1329
Preview
$$U_{1329}(x, y) = \frac{x}{1 - y} + \frac{1}{\left(1 - y\right)^{2}}$$
Pyramid 1330
Preview
$$U_{1330}(x, y) = x + \frac{1}{\left(1 - y\right)^{3}}$$
Pyramid 1331
Preview
$$U_{1331}(x, y) = x + \frac{1}{\left(1 - y\right)^{4}}$$
Pyramid 1332
Preview
$$U_{1332}(x, y) = x + \frac{1}{\left(1 - y\right)^{5}}$$
Pyramid 1333
Preview
$$U_{1333}(x, y) = \frac{x}{1 - y} + \frac{1}{\left(1 - y\right)^{5}}$$
Pyramid 1334
Preview
$$U_{1334}(x, y) = \frac{x}{\left(1 - y\right)^{2}} + \frac{1}{\left(1 - y\right)^{4}}$$
Pyramid 1335
Preview
$$U_{1335}(x, y) = x + \left(y + 1\right)^{5}$$
Pyramid 1336
Preview
$$U_{1336}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x} \left(y + 1\right)^{5}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1337
Preview
$$U_{1337}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x} \left(y + 1\right)^{2}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1338
Preview
$$U_{1338}(x, y) = x + \left(y + 1\right)^{3}$$
Pyramid 1339
Preview
$$U_{1339}(x, y) = \frac{1 - \sqrt{- 4 x y^{3} - 12 x y^{2} - 12 x y - 4 x + 1}}{2 x}$$
Pyramid 1340
Preview
$$U_{1340}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x} \left(y + 1\right)^{3}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Page:
1
...
64
65
66
67
68
69
70
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less