1. Why do we need another encyclopedia on mathematics
Mathematical knowledge bases are the development of mathematical reference books and encyclopedias and are becoming an important tool in mathematical research and in research in related fields.Examples of such databases knowledge is an online encyclopedia of whole sequences [1], server combinatorial objects [2], etc.
Let's consider one of the most famous such knowledge bases - the online encyclopedia of whole sequences (www.oeis.org ), which has over three hundred thousand sequences. Every day tens of thousands of mathematicians, engineers and students use this encyclopedia in their work when conducting research and training sessions. Each article of this encyclopedia contains [1]:
  1. Numerical sequence;
  2. Comments describing mathematical objects related to this sequence;
  3. Formulas defining this sequence (generating function, explicit or recurrent formula, equation;
  4. References related to this sequence;
  5. Implementation of formulas or algorithms for calculating this sequence in various programming systems (Maxima, Mathematica, Maple, etc.;
  6. Environment of links to Internet resources;
  7. Usage examples;
  8. Relation to other sequences;
  9. The author of this sequence and the authors of the individual elements of this sequence.
The main function of this knowledge base is to search and edit numerical sequences, which can be of two types: linear sequence and triangle. The triangle is also represented by a linear sequence. This encyclopedia has a number of significant drawbacks:
  1. It is impossible to imagine tensors having 3 or more indices;
  2. Outdated interface, formulas are written in text mode;
  3. The search is implemented only by elements of the numerical sequence;
The described disadvantages do not detract from the importance of this knowledge base for mathematical research and the practice of using numerical sequences and algorithms. However, the development of the mathematical apparatus of the composition of generating functions of many variables makes it possible to obtain explicit expressions of the coefficients of generating functions of many variables [3] and to find approaches and algorithms for implementing this operation in computer algebra systems, and the first step in this direction is to create an appropriate knowledge base for tensors $T(n,m,k)$ described by products of binomial coefficients, which are coefficients -degrees of the generating function of two variables.
The proposed encyclopedia is an addition oeis.org in terms of the representation of the generating functions of two variables and their coefficients of the $k$th degree.
2. Why do we need generating functions
Generating functions is a mathematical apparatus that provides the solution of discrete problems using mathematical analysis. Generating functions are widely used in combinatorics, in the analysis of computational complexity of algorithms, in probability theory and mathematical statistics, in solving classes of functional equations, in solving differential equations, in calculating integrals, etc.
3. Features of this encyclopedia
There can be a huge number of generating functions. So, in the online encyclopedia of integers, more than 300 thousand generating functions are recorded. In this encyclopedia there are 1500 generating functions of two variables and their coefficients of the kth degree. Here we present only generating functions whose coefficients of the kth degree are represented by binomial coefficients. It can be hypothesized that the number of generating functions of two variables whose expressions are explicitly given and their coefficients of the kth degree are expressed by binomial coefficients is limited. An example from the encyclopedia of a typical generating function and its coefficients
$$U_{39}(x,y)= {1-\sqrt{1-4\,x-4\,x\,y}}\over{x\,\left(2+2\,y\right)}$$
Decomposition of the generating function $$\begin{array}{llllll}1&0&0&0&0&0\\1&1&0&0&0&0\\2&4&2&0&0&0\\5&15&15&5&0&0\\14&56&84&56&14&0\\42&210&420&420&210&42\end{array}$$
4. What tasks does this encyclopedia solve?
The development of the methodology for solving problems based on the use of generating functions of many variables, presented in [3-12], has significantly expanded the scope of their application. An important element was the knowledge base for mathematical objects described by coefficients $k$th degrees of the generating function of two variables. It is possible to identify the following tasks, the solution of which can be carried out with the help of this knowledge base:

  1. finding an explicit formula for the coefficients of the composition of generating functions and their degrees $$ F(x,y,\ldots,G(x,y,\ldots,z),\ldots,z)^k $$
  2. finding explicit formulas for the mutual generating function and their degrees $$ \frac{1}{G(x,y,\ldots,z)^k} $$
  3. finding explicit formulas for a generating function of the form $$ G(x,y,\ldots,z)^{\alpha} , \alpha\in R $$
  4. finding explicit formulas for the inverse generating function and their degrees; $$ G(x,y,\ldots,z)=\frac{y}{F\left(x,y\cdot G(x,y,\ldots,z),\ldots,z\right)} $$
  5. finding explicit formulas for a reversible generating function and their degrees; \ $$ G(x,y,\ldots,z)=F(x,y\,G(x,y,\ldots,z),\ldots,z) $$
  6. finding explicit formulas for a reversible generating function and their degrees;\ $$ G(x,y,\ldots,z)=F(x,y\,G(x,y,\ldots,z),\ldots,z) $$
  7. finding explicit formulas for the inverse inverse generating function of two variables and their degrees; $$ G(x,y,\ldots,z)=F\left(x,\frac{y}{G(x,y,\ldots,z)},\ldots,z\right) $$
  8. finding explicit expressions of logarithmic derivatives $$ \log(G(x,y,\ldots,z)) $$
5. Keywords
  • generating function
  • ordinary generating function
  • exponential generating function
  • generating function of one variable
  • generating function of two variables
  • generating function of many variables
  • coefficient of the generating function
  • coefficient of the generating function of one variable
  • coefficient of the generating function of two variables
  • coefficient of the generating function of many variables
  • coefficient of the kth degree of the generating function
  • coefficient of the kth degree of the generating function of one variable
  • coefficient of the kth degree of the generating function functions of two variables
  • coefficient of the kth degree of the generating function of many variables
  • of the composite
  • functional equation
  • composition of generating functions
  • composition of generating functions of one variable
  • composition of generating functions of two variables
  • composition of generating functions of many variables
  • mutual generating function
  • mutual generating function of one variable
  • mutual generating function of two variables
  • mutual generating function of many variables
  • inverse generating function
  • inverse generating function of one variable
  • inverse generating function of two variables variables
  • inverse generating function of many variables
  • pyramid
  • tensor
6. Designations
$F(x)=\sum_{n\geqslant 0} f(n)x^n$ - an ordinary generating function (generating function)
$F(x)=\sum_{n\geqslant 0} f(n)\frac{x^n}{n!}$ is an exponential generating function.
$F(n,k)$ - coefficient of the kth degree of the generating function $F(x), F(0)\neq 0$
$F^{\Delta}(n,k)$ - composite of the generating function $F(x), F(0)=0$
$N$ - the set of natural numbers, including zero.
$Z$ - a set of integers
$R$ - the set of real numbers.
$[x^n]F(x)$ - the operation of extracting the coefficient of the generating function $F(x)$ for a variable $x^n$.
$F(x,y)=\sum_{n\geqslant 0}\sum_{m\geqslant 0} f(n,m)x^n\,x^m$ - an ordinary generating function (generating function) of two variables
$[x^n\,y^m]F(x,y)$ - the operation of extracting the coefficient of the generating function $F(x,y)$ for variables $x^n$ and $y^m$.
$F(n,m,k)$ - coefficient of the kth degree of the generating function $F(x,y), F(0,0)\neq 0$
$F(x,y)\ldots,z)=\sum_{n\geqslant 0}\sum_{m\geqslant 0}\ldots\sum_{i \geqslant 0} f(n,m)x^n\,y^m\,\ldots z^i)$ - an ordinary generating function of many variables of variables
$F^{\Delta}(n,m,k)$ - composite of the generating function $F(x,y), F(0,0)=0$
${n\choose k}$ - binomial coefficient $C_n^k$
$n\brack k$ - Stirling numbers of the first kind $s(n,k)\geqslant 0$
$n \brace k $ - Stirling numbers of the second kind
$\left\langle \matrix{n \cr k } \right\rangle $ - Euler numbers of the first kind
$\left\langle \left\langle \matrix{n \cr k } \right\rangle \right\rangle $ - Euler numbers of the second kind
$fib(n)$ - Fibonacci numbers
7. Obtaining explicit expressions of the composition of generating functions of one variable
Let the generating function $G(x)=\sum_{n>0} g(n)x^n$ be given and its composite. $$ G^{\Delta}(n,k)=[x^n]G(x)^k. $$ $G^{\Delta}(0,0)=1$. Then for coefficients of the composition of generating functions $A(x)=F(G(x))$ will be the formula is valid
\begin{equation}\label{Lcompos1} a(n)=\sum_{k=0}^n G^{\Delta}(n,k)\,f(k). \end{equation} (1)
Look at the examples
7.1 Fibonacci Numbers
Find an explicit expression for the Fibonacci numbers. $$ A(x)=\frac{x}{1-x-x^2} $$ Let 's imagine the generating function as a composition $$ A(x)=F(G(x)). $$ where $F(x)=\frac{1}{1-x}$, $G(x)=x+x^2$, $f(n)=1$, $G^{\Delta}(n,k)={k\choose n-k}$ $$ a(n)=\sum_{k=0}^n {k\choose n-k} $$
7.2 Decomposition coefficients $\sinh{\left(\frac{x}{1-x}\right)}$
Consider obtaining an explicit expression for the expansion coefficients $A(x)=\sinh{\left(\frac{x}{1-x}\right)}$. It is known that $$ \sinh(x)=\sum_{n>0} \frac{1-(-1)^n}{2}\frac{x^n}{n!} $$ It is also known that $$ \left(\frac{x}{1-x}\right)^k=\sum_{n\geqslant k} Tp0002(n-k,k)x^n. $$ where (See encyclopedia) $$ Tp0002(n,k)={n+k-1 \choose n}. $$ Then $$ a(n)=\sum_{k=0}^n {n-1 \choose n-k} \frac{1-(-1)^k}{2\,(k!)} $$
7.3 Decomposition coefficients $e^{\sin(x)}$
To find the decomposition of the composition $A(x)=e^{\sin(x)}$ it is necessary to know composite $\sin(x)$ (in the encyclopedia it is written under the number Tp0114) $$G^{\Delta}(n,k)={\frac{(1+(-1)^{n-k})}{2^{k}\,n!} \sum_{i=0}^{\lfloor {k\over{2}}\rfloor}{(2\,i-k)^{n}{k\choose{i}}\left(-1\right)^{-i+{k+n\over(2)}}}}$$ Then $$ a(n)=\sum_{k=0}^n {\frac{(1+(-1)^{n-k})}{2^k n! k!} \sum_{i=0}^{ \lfloor {k\over{2}}\rfloor}{(2\,i-k)^{n}{k\choose{i }}(-1)^{-i+{k+n\over{2}}}}} $$
7.4 Getting the coefficients of the function ${1-2x}\over{1-3\,x+x^2}$
Up0002(x)/(1-x\,Up0020(x)) Let the generating function be given $${1-2,x}\over{1-3\,x+x^2}$$ Let 's rewrite it in the form $$ \frac{x}{1-x}\frac{1}{1-\frac{x}{(1-x)^2}}+1 $$ Consider the composition of functions $A(x)=\frac{x}{(1-x)^2}$ and $\frac{1}{1-x}$ The composite of the function $A(x)$ has the expression $$ A^{\Delta}(n,k)={n+k-1\choose n-k} $$ Then $$ [x^n]\frac{1}{1-A(x)}=\sum_{k=0}^n {n+k-1\choose n-k} $$ $$ \frac{x}{1-x}\frac{1}{1-A(x)}=\frac{x}{1-x}\left(1+\frac{x}{(1-x)^2}x+\frac{x^2}{(1-x)^4}x^2+\ldots+\frac{x^n}{(1-x)^{2n}}x^n+\ldots\right)= $$ $$ =x\,\left(\frac{1}{1-x}+\frac{x}{(1-x)^3}x+\frac{x^2}{(1-x)^5}x^2+\ldots+\frac{x^n}{(1-x)^{2n+1}}x^n+\ldots\right)= $$ the series written in parentheses has odd degrees $2n+1$. From where the summation formula will have the form. $$\sum_{k=0}^{n}{n+k\choose{n-k}}$$ Taking into account shift by $x$ and plus 1 (see the original formula, we get the desired expression). $$[x^n]{1-2,x\over{1-3\,x+x^2}}=\sum_{k=0}^{n}{n+k-1\choose{2k}}$$
7.5 Identity for harmonic numbers
Let be given a generating function for harmonic numbers $$H(x)=\frac{1}{1-x}\log\left(\frac{1}{1-x}\right)$$ Consider the composition functions $H(1-e^x)$. After substitution and transformations we get $$ H(1-e^x)=-x\,e^x. $$ Knowing that the composite of the function $A(x)=e^x-1$ has the expression $$ A^{\Delta}(n,k)= {n\brace k} \frac{k!}{n!} $$ then $$ [x^n](1-e^x)^k=(-1)^k\ {n \brace k} \frac{k!}{n!} $$ From where using the formula of the composition will get $$ [x^n]H(1-e^x)=\sum_{k=0}^n (-1)^k\ {n \brace k} \frac{k!}{n!}H_k, $$ where $H_k$ - harmonic numbers. On the other hand $$ [x^n]e^{-x}(-x)=\frac{(-1)^n}{(n-1)!}. $$ Now equate the left and the right part $$ \sum_{k=0}^n (-1)^k\ {n \brace k} \frac{k!}{n!}H_k=\frac{(-1)^n}{(n-1)!} $$ Let 's make transformations and we get the identity $$ \sum_{k=0}^n (-1)^{n-k}\,k!\, {n \brace k} \,H_k=n $$
8. Obtaining coefficients of degrees of generating functions of one variable
There are simple rules for calculating the coefficients of the powers of generating functions
8.1 Coefficients of the $k$th degree of the sum of generating functions
Coefficients of the $k$th degree of the sum of generating functions $$ [x^n](F(x)+G(x))^k=[x^n]\sum_{j=0}^k {k\choose j}F(x)^j\,G(x)^{k-j}= $$
\begin{equation}\label{gfsum1} \sum_{j=0}^k{k\choose j}\sum_{i=0}^n F(i,j)G(n-i,k-j) \end{equation} (2)
Example $$ \frac{1+x-x^3}{1-x}=\frac{1}{1-x}+x+x^2 $$ $$ [x^n]\frac{1}{(1-x)^k}={n+k-1 \choose n} $$ $$ [x^n](x+x^2)^k={k \choose n-k} $$ $$ [x^n]\left(\frac{1+x-x^3}{1-x}\right)^k=\sum_{j=0}^k \sum_{i=0}^n {i+j-1\choose i}{k-j\choose n-i-k+j} $$
8.2 Coefficients of the $k$th degree of the product of generating functions
Coefficients $k$-th degree of the product of generating functions
\begin{equation}\label{gfprod1} [x^n](F(x)\cdot G(x))^k=\sum_{j=0}^n F(i,k)G(n-i,k) \end{equation} (3)
Example
Let the generating function $$ \frac{1+x}{1-x}=1+2\,x+2\,x^2+2\,x^3+2\,x^4+2\,x^5+\cdots $$ be given. Let's find the coefficients of the kth degree of this function using the formula (3). $$ [x^n]\left(\frac{1+x}{1-x}\right)^k=\sum_{i=0}^n {i+k-1\choose i}\,{k\choose n-i} $$
8.3 Coefficients of the $k$th degree of the composition of generating functions
\begin{equation}\label{gfcomp1} [x^n](F(G(x))^k=\sum_{j=0}^n G^{\Delta}(n,j)F(j,k) \end{equation} (4)
$ G^{\Delta}(n,k)$ - - composite function of $G(x)$
Example
Let the generating function $$ \frac{1}{1-sin(x)}=1+x+x^2+\frac{5x^3}{6}+\frac{2x^4}{3}+\frac{61x^5}{120}+\dots $$ be given, let's find the coefficients of the kth degree of this function using the formula (4). To do this , you need to know the composite $\sin(x)$ of the function. Her composite is recorded in the encyclopedia under the number Tp0114 (see section 7.3) $$ [x^n]\left(\frac{1}{1-\sin(x)}\right)^k=\sum_{m=0}^n Tp0114(n,m){m+k-1\choose m} $$ here $F(x)=\frac{1}{1-x}$, $G(x)=\sin(x)$.
8.4 Coefficients of the $k$th degree of the mutual generating function
\begin{equation}\label{gfrecip1} [x^n][x^n]\frac{1} {F(x)^k}=\sum_{i=0}^{n}F(0)^{-k-i}\,\left(-1\right)^{i}\,{k +i-1\choose{i}}\,F\left(n , i\right)\,{n+k\choose{n-i}} \end{equation} (5)
Example
$$x\cot(x)=1-{\frac{x^2}{3}}-{\frac{x^4}{45}}-{\frac{2\,x^6}{945}}+\cdots $$ Let the generating function be given. Let's find the coefficients of the kth degree of this function using the formula (5). To do this , we write $$ x\cot(x)=\frac{x}{\tan(x)} $$ Let's find the composite $\tan(x)$. In the encyclopedia, this composite is written under the number $Tp0117$ $$Tp0117(n,k)=\frac{((-1)^{n}+1)}{(n+k)!}\,\sum_{j=k}^{n+k}{j-1 \choose{k-1}},j!,2^{n-j-1},(-1)^ {\frac {n+k}{2} + j} {n\brace j} $$ $$[x^n](\frac{\tan(x)}{x})^k=Tp0117(n+k,k)=\frac{((-1)^{n}+1)}{(n+k)!} \sum_{j=k}^{n+k} {j-1 \choose k-1 } j! 2^{n+k-j-1} (-1)^{\frac{n+2k}{2} +j} {n+k \brace j} $$ $$[x^n](\frac{\tan(x)}{x})^k=\frac{((-1)^{n}+1)}{(n+k)!} \sum_{j=0}^{n} {j+k-1 \choose k-1 } (j+k)! 2^{n+j-1} (-1)^{\frac{n}{2} +j} {n+k \brace j+k} $$ $$[x^n](\frac{\tan(x)}{x})^i=\frac{((-1)^{n}+1)}{(n+i)!} \sum_{j=0}^{n} {j+i-1 \choose i-1 } (j+i)! 2^{n+j-1} (-1)^{\frac{n}{2} +j} {n+i \brace j+i} $$ then the desired formula will have the expression $$ \sum_{i=0}^{n}{k+i-1\choose i}\, \frac{((-1)^{n}+1)}{(n+i)!} \sum_{j=0}^{n} {j+i-1 \choose i-1 } (j+i)! 2^{n+j-1} (-1)^{\frac{n}{2}+j+i} {n+i \brace j+i} \binom{n+k}{n-i} $$
8.5 Finding explicit expressions for decomposing functions of the form $G(x)^{-\alpha}$, $\alpha\in R$
$$ \sum_{j=0}^{n} \frac{(-1)^j}{T(0,1)^{j+\alpha}} {j+\alpha-1 \choose j} {T(n,j)} {n+\alpha \choose n-j} $$ (6)
and
$$ (n+1)\binom{n+\alpha}{n+i} \sum_{i=0}^{n} \frac{T(0,1)^{-j-\alpha}(-1)^{j} T(n,j){n\choose j}} {j+\alpha} $$ (7)
Let's look at the examples
8.5.1 Example 1 $$ G(x)=(\frac{x}{e^x-1})^{\alpha} $$ $$ (e^x-1^k)=\sum_{n\geqslant k} {n \brace k} \frac{k!}{n!} x^n $$ $$ (\frac{e^x-1}{x})^k=\sum_{n\geqslant 0} {n+k \brace k} \frac{k!}{(n+k)!}x^n $$ $$ \sum_{j=0}^{n}(-1)^{j} \binom {j+\alpha-1}{j} {n+j \brace j} \frac{j!}{(n+j)!} { n+\alpha \choose n-j} $$ and $$ (n+1){n+\alpha \choose n+1}\sum_{j=0}^{n} \frac{(-1)^{j}j! {n+j\brace j} {n \choose j}} {(j+\alpha)(n+j)!} $$ 8.5.2 Example 2 $$ G(x)=(\sqrt{\cos(x)})^{3} $$ For the function $cos(x)$, the expression $cos(x)^k$ expansion coefficient is known. In the encyclopedia under the number Tp0115. $$ Tp0115(n,k)= \begin{array} 11, & n=0, \ \frac{(-1)^{n \over 2} {(-1)^{n}+1}} {2^{k} n!} \sum\limits_{i=0}^{k-1 \over 2} (k-2i)^{n} {k\choose i} & n>0.\ \end{array} $$ Let 's use the formula (6) for $\alpha=-\frac{3}{2}$, $Tp0115(0,1)=1$ $$ \sum_{j=0}^{n}(-1)^{j} \binom{j-\frac{3}{2}-1}{j} Tp0115(n,j) \binom{n-\frac{3}{2}}{n-j} $$
8.6 Coefficients of the $k$th degree of the generating function of the solution of the functional equation $A(x)=G(x\,A(x)^m$, $m\in N$
Let the functional equation $A(x)=G(x\,A(x)^m$, $m\in N$ be given and the expression $$ [x^n]G(x)^k=G(n,k) $$ $G(0)\ne 0$ is known. Then for the coefficients of the degree: $$ [x^n]A(x)^k=A(n,k) $$ the following relation holds
\begin{equation}\label{gflagr1} A(n,k)=\frac{k}{m\,n+k}G(n,m\,n+k) \end{equation} (8)
Example Let the functional equation $$ A(x)=\frac{1+x\,A(x)}{1-x\,A(x)} $$ $m=1$ be given. To solve this equation, it is necessary to find $G(n,k)$. It is known (see the example section 8.2) that $$ [x^n]\left(\frac{1+x}{1-x}\right)^k=\sum_{i=0}^n {i+k-1\choose i}\,{k\choose n-i} $$ Substituting the found $G(n,k)$ into the formula (8) we will get the desired solution $$ A(n,k)=\frac{k}{n+k}\sum_{i=0}^n {n+k+i-1\choose i}\,{n+k\choose n-i} $$ Now let 's rewrite our equation in the form $$ x\,A(x)^2+1+(x-1)\,A(x)+1=0 $$ we solve it with respect to $A(x)$, we get $$ A(x)={1-x+\sqrt{1-6\,x+x^2}\over{2\,x}}$$ Then $$[x^n]\left({1-x+\sqrt{1-6\,x+x^2} \over{2\,x}}\right)^k=\frac{k}{n+k}\sum_{i=0}^n {n+k+i-1\choose i}\,{n+k\choose n-i}.$$ thus, the formula of the coefficients of the degree for the generating function of large Schroeder numbers is found (see encyclopedia)
8.7 Coefficients of the $k$th degree of the inverse generating function
Consider the functional equation $$ A(x)\cdot G(A(x))=x $$ $G(0)\ne 0.$ $$ G^{\Delta}(n,k)=[x^n]\left(x\,G(x)\right)^k. $$ Then
\begin{equation}\label{gfinver1} A^{\Delta}(n,k)=\frac{k}{n}\sum_{j=0}^{n-k} G(1,1)^{-n-j}(-1)^{j} {n+j-1\choose j}G^{\Delta}(n,j) {2\,n-k \choose n-k-j} \end{equation} (9)
Example Let the generating function be given: $$ G(x)=\frac{\exp(x)+x-1}{2} $$ We obtain the coefficients of the k-degree of the inverse function. To do this, use the formula (9). Find the composite of the function $G(x)$,to do this, use the sum formula: $B(x)=e^x-1$, its composite ${n\choose k}\frac{k!}{n!}$. For $C(x)=x$, composite $\delta(n,k)$. Then $$ G^{\Delta}(n,k)=\sum_{j=0}^k{k\choose j}\sum_{i=0}^n {i \brace j}\frac{j!}{i!}\delta(n-i,k-j) $$ Now substitute $i=n-k+j$ $$ G^{\Delta}(n,k)=\sum_{j=0}^k{k\choose j} {n-k+j\brace j} \frac{j!}{(n-k+j)!} $$ $$ $G^{\Delta}(1,1)=1,$$ $$ A^{\Delta}(n,k)= \frac{k}{n}\sum_{j=0}^{n-k}(-1)^{j}\,{n+j-1\choose j}G{\Delta}(n,j) {2\,n-k \choose n-k-j} $$ From where we get the identity $$\sum_{j=k}^{n}{A^{\Delta}(j,k)\,G^{\Delta}(n,j)}=\delta(n,k)$$
8.8 Coefficients of the kth degree of the generating function of the solution of the functional equation $A(x)=G\left(\frac{x}{A(x)}\right)$
\begin{equation}\label{gfleft1} A(n,k)=k\,\sum_{j=1}^{n}\frac{1}{j}{G}\left(0 , 1\right)^{-n+k-j}\left(-1 \right)^{j-1}{G}\left(n , j\right){n-k+j-1 \choose j-1}{2\,n-k \choose n-j} \end{equation} (10)
${\bf Example}$ Let $$ G(x)=\frac{\log(1+x)}{x} $$ and $$$ G(n,k)=\frac{k!}{(n+k)!}{n+k \brack k}(-1)^n. $$ Let 's write down the equation $$ A(x)=G\left(\frac{x}{A(x)}\right)=\frac{\log(1+\frac{x}{A(x)}}{\frac{x}{A(x)}} $$ From where, we get the generating function for the Bernoulli numbers $$ A(x)=\frac{x}{e^x-1} $$ Then $$ A(n,k)=k\,\sum_{j=1}^{n}\frac{1}{j} {\left(-1\right)^(n+j-1)}\frac{j!}{(n+j)!} {n+j \brack j}{n-k+j-1\choose j-1} {2,n-k \choose n-j} $$ $A(0,k)=1$
\s
8.9 Generating function for the diagonal $G(n,n)$
Let the generating function $G(x)=\sum_{n\geqslant 0} g(n)x^n$be given and the coefficients of expansion of its degree $$ G(n,k)=[x^n]G(x)^k $$ Then the generating function for the diagonal $G(n,n)$ will have an expression $$ \frac{x\,A'(x)}{A(x)}, $$ where $A(x)$ is the solution of the functional equation $$ A(x)=G(x\,A(x)). $$ If $A(n,k)$ is known, then the diagonal $G(n,n)$ will have the following expression
$\begin{equation} G(n,n)=n\,\sum_{j=1}^{n}\frac{(-1)^{j-1}\,A(n,j)}{j\,A(0,1)^{j}}\,{n\choose j}. \end{equation}$ (11)
Example. Let the generating function $$ G(x)=\frac{1+x-x^2}{1-x} $$ be given and the expression for the coefficients of the degree is given $$ [x^n]G(x)^k=G(n,k)=\sum_{j=0}^{\left \lfloor {n \over 2} \right \rfloor}{k \choose j}\,{n-j-1\choose n-2\,j} $$ It is necessary to find the generating function for the diagonal $G(n,n)$. To do this , you need to solve the equation $$ A(x)=G(x\,A(x)=\frac{1+x\,A(x)-x^2\,A(x)^2}{1-A(x)} $$ $$A(x)^2\,\left(x^2+x\right)+A(x),\left(-x-1\right)+1=0$$ $$A(x)=1+x-\sqrt {1-2x-3x^2}\over{2\,x+2\,x^2}$$ We find the logarithmic derivative $$B(x)=\frac{(xA(x))'}{A(x)}\frac{1}{2} ({1\over 1+x}+{1\over\sqrt{1-2x-3x^2}}) $$ from where $$ [x^n]B(x)=G(n,n)=\sum_{j=0}^{\left \lfloor {n \over 2 } \right \rfloor}{n \choose j}\,{n-j-1 \choose n-2\,j} $$
8.10 Decomposition of the composition $F(x)=\log(A(x))$
The consequence of the statements of the paragraph 8.9 is that for the composition of the functions of $F(x)=\log(A(x))$, the expansion coefficients will have the expression
\begin{equation}\label{gflog1} f(n)=\sum_{j=1}^{n}\frac{(-1)^{j-1}\,A(n,j)}{j\,A(0,1)^{j}}\,{n\choose j}. \end{equation} (12)
Let's look at the examples
Example 1 $$ \log\left(\frac{1}{1-x}\right) $$ $$ [x^n]\left(\frac{1}{1-x}\right)^k={n+k-1\choose n} $$ $$\sum_{j=1}^{n}\frac{(-1)^{j-1}}{j}{n+j-1\choose n}{n \choose j}=\frac{1}{n}$$ Example 2 $$\log(e^x)=x$$ $$\sum_{j=1}^{n} (-1)^{j-1}\,{n\choose j}j^{n-1}=\left\{\begin{array}{ll} 1,& n=1,\ 0,& n>0. \end{array}\right.$$
9. Obtaining explicit expressions of the composition of generating functions of two variables
Consider the solution of the problem of finding an explicit formula for the composition of generating functions of two variables. To do this, write down Table 1 obtained in [3]. In the first column, the variants of the composition of the generating functions are written, in the second - explicit expressions of the coefficients of the $k$-th degree of the generating function, the expression through the coefficients of the $k$-th degree of the generating functions forming the composition. For $k=1$ we obtain the coefficients of the composition of the generating functions.
Table of formulas for determining coefficients of degrees of series composition
N Composition $G(x,y)^k$ The formula for $g(n,m,k)$
1 $G(x,y)^k=H(A(x),y)^k$ $g(n,m,k)=\sum\limits_{q=0}^n A^{\Delta}(n,q)h(q,m,k)$
2 $G(x,y)^k=H(x,B(y))^k$ $g(n,m,k)=\sum\limits_{r=0}^m B^{\Delta}(m,r)h(n,r,k)$
3 $G(x,y)^k=H(A(x,y))^k$ $g(n,m,k)=\sum\limits_{q=0}^{n+m} A^{\Delta}(n,m,q)h(q,k)$
4 $G(x,y)^k=H(A(x,y),y)^k$ $g(n,m,k)=\sum\limits_{q=0}^{n+m}\sum\limits_{r=0}^{m}{A^{\Delta}\left(n ,m-r,q\right)h(q,r,k)}$
5 $G(x,y)^k=H(x,B(x,y))^k$ $g(n,m,k)=\sum\limits_{q=0}^{n}{\sum\limits_{r=0}^{n+m-q}{B^{\Delta}\left(n-q ,m,r\right)}\,h(q,r,k)}$
7 $G(x)^k=H(x,B(x))^k$ $g(n,k)=\\sum\\limits_{q=0}^{n}{\\sum\\limits_{r=0}^{n-q}{B^{\\Delta}(n-q,r)\, h(q,r,k)}}$
To perform a composition $G(x,y)=H(A(x,y),y)$ it is necessary to know the condition that the internal function $A(0,0)=0$. In the developed knowledge base there are many functions having a free member $A(0,0)\ e=0$. To achieve a given condition , you can use the following methods : multiplying the generating function by a monomial variable $x^ay^b$, where $a,b \in N$, $a\geqslant 0$, $b\geqslant 0$ or by subtracting from the generating function of the zero element of the decomposition.
$$G(x,y)={x,y-1\over{x,y+x^2+x-1}}$$ it can be represented as $$ G(x,y)=\frac{1}{1-\frac{x+x^2}{1-x\,y}}=H(A(x,y)), $$ where $H(x)=\frac{1}{1-x}$, $A(x,y)=\frac{x+x^2}{1-x\,y}$ In the knowledge base we do request for a generating function $U(x,y)=\frac{1+x}{1-y}$. We will get the pyramid found at number 17.
Generating function:
$U_{17}(x,y)={1+x\over{1-y}}$
Formula: $T_{17}(n,m,k)={k\choose{n}}\,{m+k-1\choose{m}}$
Data:
$\begin{array}{lllllll}1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0 \end{array} $
Then the formula $x\frac{1+x}{1-y}$ will be true for the composites of the function $$ T_{17}(n-k,m,k)={k\choose{n-k}}\,{m+k-1\choose{m}} $$ Now let's do let's do the product of the variable $y$ by $x$ we get $$ A^{\Delta}(n,m,k)=T_{17}(n-m-k,m,k)={k\choose{n-k}}\,{m+k-1\choose{m}} $$ From where, based on the formula of the composition of two variables (see Table 1, line 3, $k=1$) $$ g(n,m)=\sum_{k=0}^{n+m} A^{\Delta}(n,m,k)=\sum_{k=0}^{n-m}{k\choose{n-m-k}}\,{m+k-1\choose{m}}. $$ Thus, we have obtained an explicit formula for the triangle sequence A055830, describing the class of paths on the lattice [12].
10. Finding mutual generating functions
Let be given a generating function of the form: $$G(x,y)={x-\sqrt{x^2-2\,x^2\,y+2\,\sqrt{1-4\,x}\,x^2\,y}}\over{2\,x^2\,y}$$ Let 's find an explicit formula for the mutual generating function: $$ A(x,y)=\frac{1}{G(x,y)} $$ Decompose the function $G(x,y)$ nto a Taylor series at the point $x=0$ and $y=0$ $$ \begin{array}{l}\ 1\ +\left(1+y+\cdots \right)\,x\ +\left(2+2\,y+2\,y^2+\cdots \right)\,x^2\ +\left(5+5\,y+6\,y^2+5\,y^3+\cdots \right)\,x^3\ +\left(14+14\,y+18\,y^2+20\,y^3+14\,y^4+\cdots \right)\,x^4+\cdots \end{array}$$ Note that this function describes a triangle and $G(0,0)=1$. Then we write the function $H\left(x,\frac{y}{x}\right)$. Looking for this function in the knowledge base, we get the function and tensor number 69 (see paragraph 10)
Generating function:
$U_{69}(x,y)=x-\sqrt{x^2-2\,x\,y+2,\sqrt{1-4\,x}\,x\,y}\over{2\,x\,y}$
Formula: $T_{69}(n,m,k)=\frac{k\,{2\,m+k-1 \choose{m}}\, {2\,n+m+k-1\choose{n}}}{n+m+k}$
Data:
$\begin{array}{lllllll}1&1&2&5&14&42&132\\1&2&6&20&70&252&924 \\2&5&18&70&280&1134&4620\\5&14&56&240&1050&4620&20328 \\14&42&180&825&3850&18018&84084\\42&132&594&2860&14014&68796&336336 \\132&429&2002&10010&50960&259896&1319472\end{array}$
Then the expression will be true for the original function: $$ G(x,y)=\sum_{n}\sum_{m} T_{69}(n-m,m,k)x^n\,y^m. $$ To obtain an expression of the coefficients of the mutual generating function, you can use the expression[10]: $$T_r(n,m,k)=\sum_{j=0}^{m+n}{T(0 , 0 , 1)^{-j-k}(-1)^{j}{j+k-1\choose{j}}{\it T}\left(n , m , j\right) {k+m+n\choose{m+n-j}}}$$ Where $T(n,m,k)$ - is the tensor for the original generating function, provided that $T(0,0,0)=1$ and $T(n,m,0)=0$. Write down the tensor for the original function $$ T(n,m,k)=T_{69}(n-m,m,k)={\frac{k}{n+k}{2\,m+k-1\choose{m}}{2\,n+k-1\choose{n-m}}}. $$ Then the tensor of the mutual generating function will have an explicit expression $$ T_r(n,m,k)=\sum_{j=0}^{m+n}(-1)^{j} {j+k-1\choose{j}} {\frac{j}{n+j}} {2\,m+j-1\choose{m}} {2\,n+j-1\choose{n-m}} {k+m+n\choose{m+n-j}}. $$
10.1 Finding explicit expressions for decomposing functions of the form $G(x,y)^{\alpha}$
Let $$ G(x,y)^k=\sum_{n\geqslant 0}\sum_{m\geqslant 0} T(n,m,k)x^ny^m $$ $G(0,0)\neq 0$.Then the coefficients of the decomposition of the function $$ \frac{1}{G(x,y)^{\alpha}} $$ will have the following expressions
\begin{equation} \sum_{j=0}^{n+m}{\frac{(-1)^{j}} {T(0,0,1)^{j+\alpha}} {j+\alpha-1\choose{j}}{\it T}(n,m,j) {n+m+\alpha \choose{n+m-j}}} \end{equation} (13)
and
\begin{equation} (n+m+1){n+m+\alpha\choose{n+m+1}}\sum_{j=0}^{n} T(0,0,1)^{-j-\alpha} (-1)^{j} T(n,m,j) {n+m\choose{j}} \over{j+\alpha} \end{equation} (14)
Let's look at the example $$ \frac{x+y}{\log(1+x+y)} $$ $$ (\log(1+x)^k=\sum_{n\geqslant k} (-1)^{n-k}{n \brack k} \frac{k!}{n!}\,x^n $$ $$ \left(\frac{\log(1+x)}{x}\right)^k=\sum_{n\geqslant 0} (-1)^n\, {n+k \brack k} \frac{k!}{(n+k)!}x^n $$ Let's find the composition $$ A(B(x,y))=\frac{\log(1+x+y)}{x+y} $$ where $A(x)=\log(1+x)$, $B(x,y)=x+y$. Let's find the function $B(x,y)$ in the encyclopedia.This function is written by number 0001. Where from $$ B(x,y)^k= \sum_{n\geqslant 0} \sum_{m \geqslant 0} \delta_{k, n+m}\, {n+m \choose m }\,x^n\,y^m $$ Then we use the formula compositions (see table). We get $$ \sum_{j=0}^{n+m} B^{\Delta}(n,m,k)A^{\Delta}(j,k)= $$ $$ \sum_{j=0}^{n+m} \delta_{j, n+m} \,{n+m \choose m }(-1)^j\,{j+k \brack k}\frac{k!}{(j+k)!}= $$ $$ {n+m \choose m}(-1)^{n+m} {n+m+k \brack k} \frac{k!}{(n+m+k)!} $$ $$ \sum_{j=0}^{n+m} {\left(-1\right)^{j}\,}\ { j+\alpha-1 \choose j} {n+m \choose m} (-1)^{n+m} {n+m+j \brack j} \frac{j!}{(n+m+j)!}\, {n+m+\alpha \choose n+m-j} $$
11. Finding the coefficients of inverse generating functions
Let the generating function $$ F(x,y)=\frac{x}{1-x-x^2(1+y)} $$ be given. Find the coefficients of the expansion of the inverse function satisfying the equation $$ G(A(x,y),y)=x . $$ To do this , we write $$ G_x(x,y)=\frac{G_x(x,y)}{x}. $$ Then the equation will take the form: $$ A(x,y)=\frac{x}{G_x(A(x,y),y)} $$ Now let's perform the substitution $A(x,y)=xA_x(x,y)$ $$ A_x(x,y)=\frac{x}{G_x(A_x(x,y),y)} $$ Then to find the inverse of the functions, you can use the formula. However, in this case the mutual mutual function is easy to find $$ G_{r}(x,y)=1-x-x^2(1+y)=(1-x(1+x+xy). $$ Now we find the pyramid $T(n,m,k)$ of the function $F(x,y)=(1+x+xy)$ at number 37 (see the fragment below).
Generating function:
$U_{37}(x,y)=1+x+x\,y$
Formula: $T_{37}(n,m,k)={k\choose{n}}\,{n\choose{m}}$ Data: $\begin{array}{lllllll}1&0&0&0&0&0&0\\1&1&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\\0&0&0&0&0&0&0\end{array}$
$$ T_r(n,m,k)=\sum_{i=0}^{n+m} T_{37}(n-i,m,i){k\choose i}(-1)^i=\sum_{i=0}^{n+m} {i\choose{n-i}}\,{n-i\choose{m}}{k\choose i}(-1)^i= $$ $$ \sum_{i=0}^{n} {i\choose{n-i}}\,{n-i\choose{m}}{k\choose i}(-1)^i $$ Then the coefficients for $A_x(x,y)^k$ $$ T_{A_x}(n,m,k)=\frac{k}{n+k}T_r(n,m,n+k)=\frac{k}{n+k}\sum_{i=0}^{n} {i\choose{n-i}}\,{n-i\choose{m}}{k+n\choose i}(-1)^i $$ $${\sqrt{4\,x^2\,y+5\,x^2+2\,x+1}-x-1}\over{2\,x^2\,y+2\,x^2}$$
12. Finding the generating function for the explicit expression of coefficients
Let the expression be given $$\sum_{k=0}^{m}{n+m-k+2\choose{k}}{n+m-k\choose{n}}$$ We will perform a number of transformations in order to obtain one of the compositional formulas presented in [3]. $$\sum_{k=0}^{m}{n+m-k+2\choose{ k}}{m-k+n\choose{n}}$$ changing the summation order from $k$ to $m-k$ $$\sum_{k=0}^{m}{n+k+2\choose{ m-k}}{k+n\choose{n}}$$ now the index $k$ does not start from zero, but from $n$ $$\sum_{k=n}^{n+m}{k+2\choose{ n+m-k}}{k\choose{n}}$$ now the index k $k$ starts from zero. $$\sum_{k=0}^{n+m}{k+2\choose{ n+m-k}}\,{k\choose{k-n}}$$ we introduce a new variable and introduce summation by this variable, using the kronecker symbol $$ j=n+m-k $$ we get $$\sum_{k=0}^{n+m}{\sum_{j=0}^{m}{\delta_{j, n+m-k} \,{k+2\choose{ j}}\,{-j+n+m\choose{m-j}}}}$$ now we compare it with the compositional formula $$g(n,m)=\sum\limits_{k=0}^{n+m}\sum\limits_{j=0}^{m}{A^{\Delta}\left(n ,m-j,k\right)h(k,j)}$$ Note that for our case $$ A^{\Delta}\left(n ,m-j,k\right)={\delta_{j, n+m-k}{-j+n+m\choose{m-j}}} $$ Where from $$ A^{\Delta}(n ,m,k)={\delta_{k, n+m}{n+m\choose{m}}} $$ From where, using the encyclopedia, we will find the pyramid at number 1, its generating function is $(x+y)$. Now let's find the generating function for $$ h(n,m)={n+2\choose{ m}} $$ We make a request to the knowledge base: $T=binomial(n+2,m)$ We get the pyramid number 42 (see the fragment below).
Generating function:
$U_{42}(x,y)=\frac{(1+y)^2}{1-x\,(1+y)}$ Formula:
$T_{42}(n,m,k)={n+k-1\choose{n}}\,{n+2k\choose{m}}$ Data: $\begin{array}{lllllll}1&2&1&0&0&0&0\\1&3&3&1&0&0&0\\1&4&6&4&1&0&0\\1&5&10&10&5&1&0\\1&6&15&20&15&6&1\\1&7&21&35&35&21&7\\1&8&28&56&70&56&28\end{array}$
From where we get the desired generating function. $$ A(x,y)=UU0042(x+y,y)= {\left(y+1\right)^2 \over 1-\left(y+1\right)\,\left(y+x\right)} $$
13. Finding the composition of logarithmic functions and their derivatives
1. Let be given a functional equation of the form: $$ A(x,y)=G(x\,A(x,y),y) $$ And the expression of the coefficients of the k-degree of the generating function $G(x,y)$. $$ T_G(n,m,k)=[x^n\,y^m]G(x,y)^k. $$ is known. Then the coefficients of the logarithmic partial derivative of the generating function $A(x,y)$ in $x$ , will be expressed in terms of the coefficients $T_G(n,m,k)$ $$ T_{lx}(n,m)=[x^n\,y^m]\frac{1}{A(x,y)}\frac{\partial A(x,y)}{\partial x} $$ $$ T_{lx}(n,m)=T_G(n,m,n) $$ 2.Let a functional equation of the form be given: $$ A(x,y)=G(x,y\,A(x,y)) $$. And the expression of the coefficients of the k-degree of the generating function is known $G(x,y)$. $$ T_G(n,m,k)=[x^n\,y^m]G(x,y)^k. $$ then the coefficients of the logarithmic partial derivative of the generating function $A(x,y)$ in $y$ , will be expressed in terms of the coefficients $T_G(n,m,k)$ $$ T_{ly}(n,m)=[x^n\,y^m]\frac{1}{A(x,y)}\frac{\partial A(x,y)}{\partial y} $$ $$ T_{ly}(n,m)=T_G(n,m,m) $$ Let's find the coefficients of the logarithmic derivative of the generating function $A_{139}(x,y)$ of the corresponding frame in the knowledge base shown in the fragment below:
Generating function:
$U_{139}(x,y)=\frac{1-2\,x-y-\sqrt{1-4\,x-(2-4\,x)\,y+y^2}}{2\,x^2}$ Formula:
$T_{139}(n,m,k)={k\,{n+m+k\choose{m}}{2n+2k\choose{n}}\over{n+m+k}}$ Data: $\begin{array}{lllllll}1&1&1&1&1&1&1\\2&4&6&8&10&12&14\\5&15&30&50&75&105&140\\14&56&140&280&490&784&1176\\42&210&630&1470&2940&5292&8820\\132&792&2772&7392&16632&33264&60984\\429&3003&12012&36036&90090&198198&396396\end{array}$
Right on y: UU0138(x,y)
Left on x: UU0059(x,y)
Left on y: UU0060(x,y)
Change x y: UU0359(x,y)
Next, follow the link to the frame 59 and copy the explicit formula for the tensor of the generating function UU0059(x,y). $$ T_{59}(n,m,k)=\frac{k {\binom{2 k}{n}} {\binom{k + m}{m}}}{k + m} $$ For the desired logarithmic derivative $$ G(x,y)=\frac{1}{A(x,y)}\frac{\partial A(x,y)}{\partial x}= 1-2\,x^2-{2\,x^2\over{U(x\,y)}}+{x^2\,(4-4\,y)\over{2{\it U}\left(x , y\right)\,\sqrt{1-4\,x-\left(2-4\,x\right)\,y+y^2}}}, $$ where $$ U(x,y)=1-2\,x-y-\sqrt{1-4\,x-\left(2-4\,x\right)\,y+y^2}. $$ the coefficients will have an explicit expression $$ g(n,m)=T_{59}(n,m,n)={n\,{2\,n\choose{n}}\,{m+n\choose{m}}\over{m+n}}=\binom{2n}{n}\binom{n+m-1}{m}. $$ 3. Consider the case when the left tensor for this generating function is unknown, but there is a tensor of this function. Then you can use the following formulas. The formula for the partial logarithmic derivative of $x$ variable is as follows: $$ T_{logx}(n,m)=\left\{\begin{array}{ll}\ T(0,0,1)^n & n=0\;, m=0,\ n\,\sum_{j=1}^{n+m}{(-1)^{j-1}\,T(n,m,j)\,{n+m\choose{j}} \over{T^{j}(0 , 0 , 1)j}}, & n>0\;or\; m>0.\ \end{array} \right. $$ The formula for the partial logarithmic derivative of $x$ variable is as follows: $$ T_{logy}(n,m)=\left\{\begin{array}{ll}\ T(0,0,1)^m & n=0\;, m=0,\ m\, \sum_{j=1}^{n+m}{(-1)^{j-1}\, T(n , m , j){n+m\choose{j}}} \over{T^{j}(0 , 0 , 1)\,j}, & n>0\;or\; m>0.\ \end{array} \right. $$ Comparing the above formulas for partial logarithmic derivatives, you can see that they differ by multipliers $m$ and $n$. The terms $T_{logx}(n,m)$ and $T_{logy}(n,m)$ describe the decomposition of the logarithmic derivative if the terms $T_{logx}(n,m)$ by $n$, and $T_{logy}(n,m)$ by $m$, we obtain the terms of the decomposition of the composition of generating functions $$ log(U(x,y)), $$ where $U(x,y)$- is the generating function having the tensor $T(n,m,k)$.Let 's write down an explicit formula for the members of the composition $$ Lo(n,m)=\sum_{j=1}^{n+m}{(-1)^{j-1} T(n , m , j){n+m\choose{j}} \over{T^{j}(0 , 0 , 1)j}} $$ Consider an example. Let the generating function number 130 be given.
Generating function: $$U_{130}(x,y)={1\over-4\,y+(1-x+y)^2}$$ Formula: $$T_{130}(n,m,k)={m+k\choose{k-1}}{n+k-1\choose{k-1}}{n+m+2\,k-1\choose{ k-1}}{2\,(n+m)+2\,k\choose{2\,m+1}}\over{2\,{2\,k-2 \choose{k-1}}{2m+2\,k\choose{2\,k-2}}}$$ Data: $$\begin{array}{lllllll}1&2&3&4&5&6&7\\2&10&28&60&110&182&280\\3&28&126&396&1001&2184&4284\\4&60&396&1716&5720&15912&38760\\5&110&1001&5720&24310&83980&248710\\6&182&2184&15912&83980&352716&1248072\\7&280&4284&38760&248710&1248072&5200300\end{array}$$
Then the coefficients of the decomposition of the composition of functions $$ \log(UU_{130}(x,y)=\log({1\over{-4\,y+(1-x+y)^2}}) $$ $$ Lo(n,m)=\sum_{k=1}^{n+m} (-1)^{k-1} { {m+k\choose{k-1}} {n+k-1\choose{k-1}} {n+m+2\,k-1\choose{k-1}} {2\,(n+m)+2\,k\choose{2\,m+1}} \over 2\,k\,{2\,k-2\choose{k-1}}\,{2\,m+2\,k\choose{2\,k-2}} } {n+m\choose{k}} $$
14.Examples
14.1 Example 1. Fina Triangle
Consider the generating function for the Fin triangle $$ G(x,y)={2\over{1+\sqrt{1-4\,x}+2\,x-2\,x\,y}} $$ $$G(x,y)=\frac{A(x)}{1-y\,A(x)}.$$ $$A(x)=\frac{2}{1+\sqrt{1-4\,x}+2\,x}$$ $$ G(x,y)=A(x)\,y+A(x)^2\,y^2+\ldots+A(x)^n\,y^n+\ldots $$ $A(x)$ - s the generating function of the Fin sequence (see. $Up0157(x)$). Then $$ G(x,y)=\sum_{n\geqslant k} Tp0157(n,k)\,x^n\,y^k $$
14.2 Example 2. Euler triangle (Euler numbers of the first genus)
Generating function for Euler numbers of the first genus $$E(x,y)={y-1\over{y-e^{x(y-1)}}}$$ Let 's imagine it in the form $$E(x,y)={1\over{1-\frac{e^{x,(y-1)}-1}{y-1}}}$$ Consider the function $$ A(x,y)=\frac{e^{x(y-1)}-1}{y-1} $$ Then it can be represented by a composition of functions $$ A(x,y)=x\,B(C(x,y)), $$ where $B(x)=\frac{e^x-1}{x}$ and $C(x,y)=x\,(y-1)$. Then $B(x)=Up0102(x)/x$ $$ B(x)^k=(\frac{e^x-1}{x})^k=\sum_{n\geqslant 0} Tp0102(n+k,k)x^n. $$ where $$Tp0102(n,k)=\frac{k!}{n!}\,{n \brace k}$$ Using the encyclopedia we will find $C(x)^k$ $$ C(x)^k=\sum_{n\geqslant k}\,Tuu0002(n,m,k)\,(-1)^{m+k}\,x^n\,y^m $$ $$ Tuu0002(n,m,k)=\delta_{k, n} \,{n\choose m} $$ We find the coefficients $B(C(x))^k$ $$ \sum_{j=0}^{n+m} Tuu0002(n,m,j)(-1)^{m+j}Tp0102(j+k,k)= $$ $$ \sum_{j=0}^{n+m}\delta_{j, n} \,{n\choose m}(-1)^{m+j}\frac{k!}{(j+k)!}\,{j+k \brace k}= $$ $$ {n \choose m }(-1)^{n+m}\frac{k!}{(n+k)!}\,{n+k \brace k}. $$ We find the coefficients $x\,B(C(x))^k$ $$ {n-k\choose m }(-1)^{n+m-k}\frac{k!}{n!}\,{n \brace k}= $$ From where we find an explicit expression for the decomposition coefficients of the desired composition $$ \sum_{k=0}^{n} {n-k\choose m}(-1)^{n+m-k}\frac{k!}{n!}\,{n \brace k} $$ Then Euler numbers of the first kind will have the following explicit expression $$ {\left\langle \matrix{n\cr m} \right\rangle}=\sum_{k=0}^{n-m} (-1)^{n+m-k}\,k!\,{n-k \choose m} {n \brace k} $$
14.3 Example 3. Generating function for second-order Euler numbers
Consider the use of an encyclopedia to obtain a generating function for Euler numbers of the second genus. To do this, we prove the following theorem.
Theorem 2 The exponential generating function for second-order Euler numbers has the form:
$$ \sum\limits_{n \geqslant 0} \sum_{m\geqslant \geqslant0} {\left\langle \left\langle \matrix{n\cr m} \right\rangle \right\rangle} \frac{x^n}{n!}t^m={1-t\over{W(-t e^{(1-t)^2,x-t})+1}}, $$ (15)
where $W(x)$ -is the Lambert function, $x>0$.
Proof We write down the exponential generating function in the form of a double series, while taking the offset by $(n-1)$ $$ E(x,t) = \sum_{n>0}\sum_{m>0} {\left\langle \left\langle \matrix{n-1\cr m} \right\rangle \right\rangle} \frac{x^n}{n!}t^m $$ Consider the formula obtained in [15]
$$ {\left\langle \left\langle \matrix{n\cr m} \right\rangle \right\rangle} =\sum_{k=0}^m (-1)^{m-k}\,{2\,n+1 \choose m-k} {n+k \choose k}, $$ (16)
It can be represented as the product of two rows $$ E(x,t)=\sum_{n>0}P_n(t)\frac{x^n}{n!}\,(1-t)^{2n-1} $$ where $$ (1-t)^{2\,n-1}=\sum_{n\geqslant 0}(-1)^m\,{2\,n-1 \choose m}t^m $$ and $$ P_n(t)=\sum_{m\geqslant 0}{n+m-1 \brace m}t^m $$ Let 's write the function $$ u(x,t)=\sum_{n>0}\sum_{m\geqslant 0}{n+m-1 \brace m}\frac{x^n}{n!}t^m $$ We show that this function is the inverse function for the function $$ y(x,t)=(x-t(e^x-1)). $$ let 's write a mutual function for $y(x,t)$ $$ \frac{x}{y(x,t)}=\frac{1}{1-t\frac{e^x-1}{x}} $$ and find her degree. To do this , we write $$ (t(\frac{e^x-1}{x}))^k=\sum_{n>0} \sum_{m>0}T(n,m,k)x^nt^n $$ It is known that for the function $(e^x-1)$ is available identity $$ (e^x-1)^k=\sum\limits_{n\geqslant 0} k!{n \brace k}\frac{x^n}{n!}, $$ we get $$ T(n,m,k)=\delta(m,k){n+k \brace k}\frac{k!}{(n+k)!}, $$ where $\delta(m,k)$ is the Kronecker symbol. For the function $\frac{1}{(1-x)}$ the identity is known $$ \frac{1}{(1-x)^k}=\sum_{n\geqslant 0} {n+k-1 \choose n}x^n. $$ Then for the degree of composition of two generating functions $$ ({1 \over 1-t\frac{e^x-1}{x}})^k =\sum\limits_{n\geqslant 0} \sum\limits_{m\geqslant 0} D(n,m,k)x^nt^m, $$ based on the compositional formula \cite{kru}, we can write $$ D(n,m,k)=\sum\limits_{i=0}^{n+m} T(n,m,i){i+k-1 \choose i}=\sum\limits_{k=0}^{n+m} \delta(m,i) {n+i \brace i}\frac{i!}{(n+i)!}{i+k-1 \choose i}= $$ $$ ={n+m \brace m}\frac{m!}{(n+m)!}{m+k-1 \choose m}. $$ Now let 's use the theorem Lagrange on the inverse function, according to which for a power series $u(x,t)$ satisfying the functional equation $$ u=x\,F(g,t) $$ where $F(x,t)$ - s a power series for which $F(0,0)\neq 0$ holds the identity. $$ [x^n]u(x,t)=\frac{k}{n}[x^{n-k}]F(x,t)^n. $$ Let 's write down the functional equation for our case $F(x,t)=\frac{1}{1-t\frac{e^x-1}{x}}$ $$ u=\frac{x}{1-t\frac{e^{u}-1}{u}}. $$ The solution to this equation will be $$ u(x,t)^k=\sum\limits_{n>0} \sum\limits_{m\geqslant 0} \frac{k}{n}D(n-k,m,n)x^n\,t^m $$ where $D(n,m,k)$ where are the coefficients of the series $F(x,t)^k$. Then $$ D(n-k,m,n)={n+m-k \brace m}\frac{m!}{(n+m-k)!}{m+n-1 \choose m} $$ For $k=1$ we get $$ u(x,t)=\sum\limits_{n>0} \sum\limits_{m\geqslant 0} \frac{1}{n}{n+m-1 \brace m}\frac{m!}{(n+m-1)!}{m+n-1 \choose m}x^n\,t^m $$ or, after simplifying the binomial coefficient and factorials, we get $$ u(x,t)=\sum\limits_{n>0} \sum\limits_{m\geqslant 0} \frac{1}{n!}{n+m-1 \choose m}x^n\,t^m $$ Thus, the function $u(x,t)$ is the inverse of the function $y(x,t)=(x-t(e^x-1))$. Now let's use the Lambert function and its properties. The Lambert function is given by the equation $$ x=W(x)e^{W(x)} $$ It is known that solutions of the equation of the form $$ g(x)=f(x)e^{f(x)} $$ the solution will be $$ f(x)=W(g(x)) $$ We use this property for our case $$ y=x(y,t)-t\,e^{x(t,y)}+t $$ We will make a replacement $$ z(y,t)=x(y,t)+t-y $$ Then the equation will have the form $$ z(y,t)=t\,e^{Z(y,t)-t+y} $$ Let 's rewrite it in the form $$ z(y,t)e^{-Z(y,t)}=t\,e^{y-t} $$ Then the solution for $z(y,t)$ will have the form $$ z(y,t)=-W(-t\,e^{y-t}) $$ Where from $$ x(y,t)=y-t-W(-t\,e^{y-t}) $$ Now consider the product $$ E(x,t)=\sum_{n>0}P_n(t)\frac{x^n}{n!}\,(1-t)^{2n-1}=\frac{1}{1-t}\sum_{n>0}P_n(t)\frac{(x(1-t)^2)^n}{n!} $$ Where from $$ E(x,t)=\frac{E_2(x(1-t)^2,t)}{(1-t)}=\frac{x(1-t)^2-t-W(-t\,e^{x(1-t)^2-t})}{1-t}. $$ Differentiating by $x$ the expression for $E(x,t)$ taking into account the properties of the derivative of the Lambert function $W(x)$ we obtain the desired generating function $$ Eu(x,t)=\sum\limits_{n>0} \sum_{m>0} {\left\langle \left\langle \matrix{n\cr m} \right\rangle \right\rangle} \frac{x^n}{n!}t^m={1-t\over{W(-t\,e^{(1-t)^2\,x-t})+1}} $$
15. Finding explicit expressions for decomposing the composition of generating functions of many variables
Consider the composition of generating functions $F(x)$ and $G(x,y,\ldots,z)$, $G(0,0,\ldots,0)=0$ Then $A(x,y,\ldots,z)=F(G(x,y,\ldots,z))$ $$ \sum_{k=0}^{n+m+\ldots, i} G^{\Delta}(n,m,\ldots,i,k)f(k) $$ $$ [x^n\,y^m\,\ldots\,z^i](x+y+\ldots+z)^k={n+m+\ldots+i\choose n,m,\ldots,i}\delta(n+m+\ldots+i,k) $$ $$ [x^n\,y^m\,\ldots\,z^i]F(x+y+\ldots+z)=\sum_{k=0}^{n+m+\ldots+i}{n+m+\ldots+i\choose n,m,\ldots,i}\delta(n+m+\ldots+i,k)f(k)= $$ $$ {n+m+\ldots+i\choose n,m,\ldots,i}f(n+m+\ldots+i) $$ Example $$ e^{\frac{x}{1-x-y-z}} $$ $$ [x^n\,y^m\,z^i]\left(\frac{1}{1-x-y-z}\right)^k= $$ $$ \sum_{j=0}^{n+m+i} {n+m+i\choose n,m,i}\delta(n+m+i,j){j+k-1\choose j}= $$ $$ {n+m+i\choose n,m,i}{n+m+i+k-1\choose n+m+i} $$ Where from $$ [x^n\,y^m\,z^i]\left(\frac{x}{1-x-y-z}\right)^k={n-k+m+i\choose n-k,m,i}{n+m+i-1\choose n-k+m+i} $$ $$ [x^n\,y^m\,z^i]e^{\left(\frac{x}{1-x-y-z}\right)}=\sum_{k=0}^{n+m+i}\frac{1}{k!}{n-k+m+i\choose n-k,m,i}{n+m+i-1\choose n-k+m+i}= $$ $$ \sum_{k=0}^{n}\frac{1}{k!}{n-k+m+i\choose n-k,m,i}{n+m+i-1\choose n-k+m+i} $$
16. Finding explicit expressions for decomposing functions of the form $G(x,y,\ldots,z)^{\alpha}$
Let the function $G(x,y,\ldots,z)$, $G(0,0,\ldots,0)\neq 0$ and be given and the coefficients of the k-th degree are given $$ G(x,y,\ldots,z)^k=\sum_{n\geqslant 0}\sum_{m\geqslant 0} T(n,m,\ldots,i,k)x^n\,y^m. $$ Then for the coefficients of the expansion $G(x,y,\ldots,z)^{-\alpha}$ will have the expressions
$$ \sum_{j=0}^{n+m+\ldots+i} \frac{(-1)^{j}}{T (0 ,0,\ldots,0,1)^{j+\alpha}} \binom{j+\alpha-1}{j} T(n,m,\ldots,i,j) \binom {n+m+\ldots+i+\alpha}{n+m+\ldots+i-j} $$ (17)
and
$$ (n+m+\ldots+i+1) {n+m+\ldots+i+\alpha\choose n+m+\ldots+i+1} \sum_{j=0}^{n+m+\ldots+i} \frac{(-1)^{j} {n+m+\ldots+i\choose j} }{(j+\alpha) T(0 ,0,\ldots,0,1)^{j+\alpha}} $$ (18)
17. How the encyclopedia was created
Consider the method of obtaining pyramids. o do this, we write down the set of generating functions of one variable and the corresponding set of explicit expressions of coefficients $k$-degrees. . Let there be a set of $G=\{g_i(x)\}$ generating functions, the coefficients of $k$-degree are described by binomial coefficients of $\{T_i(n,k)\}$. $$ \begin{array}{|c|c|}\hline \hbox{Generating function }G(x) &\hbox{Coefficients of degree } g_x(n,k)\\ \hline (1+x) & \binom{k}{n}\\ \hline \frac{1}{1-x} & \binom{n+k-1}{n}\\ \hline \frac{1-\sqrt{1-4x}}{2x} & \frac{k}{n+k}{2n+k-1\choose n}\\ \hline \frac{1-2x-\sqrt{1-4x}}{2x^2} & \frac{k}{n+k}{2n+2k\choose n}\\ \hline \frac{2}{\sqrt{3x}} \sin({ {\arcsin( {3^ {3\over{2}} \sqrt{x} \over {2} } )} \over {3} }) & {k\,{3\,n+k-1 \choose n }}\over{2\,n+k}\\ \hline 1+\sqrt{1+4x}\over{2} & k(-1)^{n-1}{2n-k-1 \choose n-1}\over{n}\\ \hline 1-\frac{4}{3} \sin ^2({ {\arcsin( {3^ {3\over{2}} \sqrt{-x} \over {2} } )} \over {3} }) & k(-1)^{n-1}{3n-k-1 \choose n-1}\over{n} \\ \hline \sqrt{1+4x} & \cases{ \begin{array} \binom {\binom{k \over 2}n} 4^{n} & k-even \\ \frac{(-1)^{n-{k+1 \over 2}} \binom {n} {k+1\over 2} \binom {2n} {n}} {\binom {2n}{k+1}}& k-odd, 2n>(k+1),\\ \frac{\binom{k+1}{2n}\binom {2n}{n}} {\binom{k+1\over 2} {n}} & k-odd,2n \le(k+1), \\ \end{array} }\\ \hline \sqrt{1+4x^2}+2x & \cases{ \begin{array}\\ \frac{k4^n}{n+k} \binom {n+k \over 2}{n},& n+k-even\\ \frac{k(-1)^{n-k-1\over2}\binom {n}{n+k+1 \over 2} \binom{2n}{n}}{(n+k) \binom{2n}{n+k+1}} &k-odd,n>(k+1),\\ \frac {k\binom{n+k+1}{2n} \binom{2n}{n}}{(n+k) \binom{n+k+1 \over 2}{n}}& n+k-odd,n\le(k+1),\\ \end{array} }\\ \hline {1\over \sqrt{1-4x}} & \cases{ \begin{array}\\ 4^n \binom {\frac{k}{2} + n-1}{n} & k-even, \\ \frac {\binom {2n+k-1}{\frac{k-1}{2}+n} \binom{\frac{k-1}{2}+n}{n}} {\binom{k-1}{k-1 \over 2}} ,& k-odd,\\ \end{array}} \\\hline {1\over 12x} + \frac{\sin (\frac{\arcsin(-1+216\,x^2)}{3})} {6x} & \cases{ \begin{array}\\ \frac{k4^n \binom {\frac{3n+k}{2}-1}{n}}{n+k}, & k - even,\\ \frac{k \binom{\frac{3n+k-1}{2}}{n} \binom{3n+k-1}{\frac{3n+k-1}{2}}} {(n+k) \binom{n+k-1}{\frac{n+k-1}{2}}}& k -odd \\\end{array} }\\ \hline \sqrt{\frac{1-\sqrt{1-16x}}{8x}} & \cases{ \begin{array}\\ \frac{k4^n \binom{\frac{4n+k}{2}-1}{n}}{2n+k} & k - even,\\ \frac{k \binom{\frac{4n+k-1}{2}}{n} \binom {4n+k-1} {\frac {4n+k-1} {2} }} {(2n+k)\binom{2n+k-1}{\frac{2n+k-1}{2}}} ,& k- odd.\\ \\ \end{array}} \\ \hline \sqrt{\frac{\sin (\frac{\arcsin(\sqrt {27x})}{3})} {\sqrt {3x}}} & \cases{ \begin{array}\\ \frac{k4^n \binom{\frac{6n+k}{2}-1}{n}}{4n+k} & k - even,\\ \frac{k \binom{\frac{6n+k-1}{2}}{n} \binom {6n+k-1} {\frac {6n+k-1} {2} }} {(4n+k)\binom{4n+k-1}{\frac{4n+k-1}{2}}} ,& k- odd.\\ \\ \end{array} }\\ \hline \end{array}$$ It should be noted that this table is significantly limited and is used as an example. Choose $g_1(x)\in G$ and $g_2(x)\in G$ and construct a new function of two variables. Two ways of obtaining pyramids of the generating function of two variables can be proposed:

1. Based on the product and composition of functions $g_1(x)\in G$ and $g_2(x)\in G$. Let $g_1(x)=(1+x)$, $g_2(x)=\frac{1}{1-x}$ and the coefficients of k-degree $g_1(x)$ have the form: $$ T_1(n,k)={k \choose n}, $$ for $g_2(x)$ $$ T_2(n,k)={n+k-1 \choose n}, $$ Let's write a new function of two variables $$ U(x,y)=g_1(x)\cdot g_2(y) $$ Then the pyramid of the function $U(x,y)$ will have the expression $$ T_U(n,m,k)=T_1(n,k)\cdot T_2(m,k) $$ Then $$ U(x,y)=\frac{1+x}{1-y} $$ From where, we get the following pyramid $$ T_U(n,m,k)={k\choose n}{m+k-1\choose m}. $$ This pyramid is listed in the encyclopedia as number 17. We will expand this method by composing generating functions for obtaining pyramids. Let's choose $g_1(x)\in G$ and $g_2(x)\in G$ and build a new function of two variables $$ U(x,y)=g_1(x\cdot g_2(y))\,g_2(y) $$ Then the pyramid of the function $U(x,y)$ will have the expression $$ T_U(n,m,k)=T_1(n,k)\cdot T_2(m,n+k) $$ In general, you can write a function of the form $$ U(x,y)=g_1(x\cdot g_2(y)^a)^b\,g_2(y)^c $$ where $a,b,c\in N$ Then the pyramid of the function $U(x,y)$ will have the expression $$ T_U(n,m,k)=p_1(n,bk)\cdot p_2(m,an+ck) $$ For example, for $g_1(x)=(1+x)$, $g_2(x)=\frac{1}{1-x}$ (see the previous example), we will set the values $a=2$, $b=2$, $c=1$. Then the function will take the form $$ U(x,y):=\frac{1}{1-y}\left(1+\frac{x}{(1-y)^2}\right)^2 $$ From where the pyramid will have the expression: $$ T_U(n,m,k)=T_1(n,2k)T_2(m,2n+k)=\binom{2k}{n}\binom{m+2n+k-1}{m} $$ This pyramid is recorded in the encyclopedia under the number 1423.

2. Consider a method for obtaining pyramids based on Lagrange's theorem. Let 's choose $g_1(x)\in G$ and $g_2(x)\in G$ and write a functional equation of the form: $$ U(x,y)=g_1(x\cdot g_2(y)^a\cdot U(x,y))^b\,g_2(y)^c $$ To do this, you need to find the coefficients of the degree $$ T(n,m,k)=[x^n\,y^m]\left(g_1(x\cdot g_2(y)^a)^b\,g_2(y)^c\right)^k=T_1(n,b\,k)T_2(m,a\,n+c\,k) $$ To do this, use the previous method. Where from $$ T_U(n,m,k)=\frac{k}{n+k}T_1(n,b(n+k))\cdot T_2(m,an+c(n+k)) $$ Let's take the initial data from the previous example. Then the functional equation will take the form: $$ U(x,y)=\left(1+\frac{x\,U(x,y)}{1-y)^2}\right)^2\frac{1}{1-y}. $$ As a result of the solution , we obtain the following generating function of two variables: $$ U(x,y)=\frac{(1-\sqrt{1-4x(1-y)^3}-2x) (1-y)^2}{2x^2} $$ Then $$ T_F(n,m,k)= \frac{k}{n+k} \binom{2n+2k}{n} \binom{3n+m+k-1}{m} $$ This pyramid is recorded in the encyclopedia under the number 1458.
Using this technique, you can get a large number of pyramids. Currently, based on the use of this technique, 1502 pyramids have been obtained.
18. References
[1] The On-Line Encyclopedia of Integer Sequences, N. J. A. Sloane, Notices, Amer. Math. Soc., 65 (No. 9, Oct. 2018), 1062-1074. Reprinted in "The Best Writing on Mathematics 2019", ed. M. Pitici, Princeton Univ. Press, 2019, pp. 90-119 and colored illustrations following page 80.
[2] The Combinatorial Object Server (2021). http://combos.org.
[3] Kruchinin, D.; Kruchinin, V.; Shablya, Y. Method for Obtaining Coeff- cients of Powers of Bivariate Generating Functions. Mathematics 2021, 9, 428. https://doi.org/10.3390/math9040428
[4] Kruchinin, D.V., Kruchinin, V.V. Application of a composition of generating functions for obtaining explicit formulas of polynomials (2013) Journal of Mathematical Analysis and Applications, 404 (1), pp. 161-171.
[5] Kruchinin, D.V., Kruchinin, V.V. Explicit formulas for some generalized polynomials (2013) Applied Mathematics and Information Sciences, 7 (5), pp. 2083-2088.
[6] V. V. Kruchinin and D. V. Kruchinin, Composita and its properties, J. Analysis and Number Theory 2 (2014), 1-8.
[7] V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coeffcients of Triangles Journal of Integer Sequences, Vol. 15 (2012), Article 12.9.3
[8] V. V. Kruchinin and D. V. Kruchinin A Generating Function for the Diagonal T2n,n in Triangles Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.6
[9] D. V. Kruchinin On solving some functional equations Advances in Difference Equations, Vol. 1 (2015), 1687-1847. doi:10.1186/s13662-014-0347-9
[10] DMITRY V. KRUCHININ and VLADIMIR V. KRUCHININ. (2019). Explicit formula for reciprocal generating function and its application. Advanced Studies in Contempo- rary Mathematics, 29(3), 365-372.
[11] (Ira M.). - A combinatorial proof of the multivariable Lagrange inversion formula. Jour- nal of Combinatorial Theory. Series A, vol. 45, n◦ 2, 1987, pp. 178-195.
[12] Clark Kimberling Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338,
[13] Kruchinin, D., Kruchinin, V., Shablya, Y.On some properties of generalized Narayana numbers (2021) Quaestiones Mathematicae. DOI: 10.2989/16073606.2021.1980448
[14] Stanley, Richard P. (2015), Catalan numbers. Cambridge University Press, ISBN 978- 1-107-42774-7.
[15] Kruchinin, Dmitry Kruchinin, Vladimir Shablya, Yuriy Shelupanov, Alexander. (2019). Explicit formulas for the Eulerian numbers of the second kind. AIP Conference Pro- ceedings. 2116. 100008. 10.1063/1.5114084.
expand_less