Generating function
$$U_{1299}(x, y) = \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + \sqrt{\frac{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1299}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0} ,\ \\\frac{2 n \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{2 m + 2 n - 1}{m}}}{m + 2 n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 1 | 28 | 84 | 264 | 858 |
2 | 8 | 28 | 96 | 33 | 1144 | 4004 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -16 | -88 | -416 | -1820 | -7616 | -31008 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 48 | 360 | 2176 | 11628 | 57456 | 269192 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1299?