Generating function
$$U_{1299}(x, y) = \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + \sqrt{\frac{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1299}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0} ,\ \\\frac{2 n \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{2 m + 2 n - 1}{m}}}{m + 2 n} \end{cases} $$
Data table
1 0 0 0 0 0 0
2 4 1 28 84 264 858
2 8 28 96 33 1144 4004
0 0 0 0 0 0 0
-2 -16 -88 -416 -1820 -7616 -31008
0 0 0 0 0 0 0
4 48 360 2176 11628 57456 269192
Export
expand_less