Generating function
$$U_{1294}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{8 y^{3}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1294}(n, m, k) = \frac{\left(3 k + 2 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{3 k + 2 m + 2 n - 1}{m}}}{3 k + m + 2 n}$$
Data table
1 3 9 28 9 297 1001
2 1 4 15 55 2002 728
-2 -14 -70 -308 -1274 -5096 -19992
4 36 216 1092 5040 22032 93024
-10 -110 -770 -4400 -22440 -106590 -482790
28 364 2912 18564 103740 532532 2578576
-84 -1260 -11340 -79800 -485100 -2677752 -13813800
Related
Export
expand_less