Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1341
Preview
$$U_{1341}(x, y) = x + \left(y + 1\right)^{4}$$
Pyramid 1342
Preview
$$U_{1342}(x, y) = \frac{\left(y + 1\right)^{6}}{1 - x}$$
Pyramid 1343
Preview
$$U_{1343}(x, y) = \frac{\left(y + 1\right)^{4}}{1 - x}$$
Pyramid 1344
Preview
$$U_{1344}(x, y) = \frac{1 - \sqrt{- 4 x y^{4} - 16 x y^{3} - 24 x y^{2} - 16 x y - 4 x + 1}}{2 x}$$
Pyramid 1345
Preview
$$U_{1345}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x} \left(y + 1\right)^{4}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1346
Preview
$$U_{1346}(x, y) = \frac{5 y + 5}{1 - x}$$
Pyramid 1347
Preview
$$U_{1347}(x, y) = \frac{1 - \sqrt{- 4 x y^{5} - 20 x y^{4} - 40 x y^{3} - 40 x y^{2} - 20 x y - 4 x + 1}}{2 x}$$
Pyramid 1348
Preview
$$U_{1348}(x, y) = x \left(y + 1\right)^{4} + 1$$
Pyramid 1349
Preview
$$U_{1349}(x, y) = \frac{1}{- x \left(y + 1\right)^{4} + 1}$$
Pyramid 1350
Preview
$$U_{1350}(x, y) = \frac{1 - \sqrt{- 4 x \left(y + 1\right)^{4} + 1}}{2 x \left(y + 1\right)^{4}}$$
Pyramid 1351
Preview
$$U_{1351}(x, y) = \frac{x^{2}}{1 - 4 y} + 1$$
Pyramid 1352
Preview
$$U_{1352}(x, y) = x + \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}}}$$
Pyramid 1353
Preview
$$U_{1353}(x, y) = \frac{1}{\left(1 - x\right) \left(1 - 4 y\right)^{\frac{3}{2}}}$$
Pyramid 1354
Preview
$$U_{1354}(x, y) = \frac{1 - \sqrt{- \frac{4 x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + 1}}{2 x}$$
Pyramid 1355
Preview
$$U_{1355}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - 4 y\right)^{3}}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{\left(1 - 4 y\right)^{3}}} \left(1 - 4 y\right)^{\frac{3}{2}}}$$
Pyramid 1356
Preview
$$U_{1356}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{1 - 4 y}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{1 - 4 y}} \sqrt{1 - 4 y}}$$
Pyramid 1357
Preview
$$U_{1357}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x} \left(1 - \sqrt{1 - 4 y}\right)}{4 y} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1358
Preview
$$U_{1358}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{4 y^{2}} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1359
Preview
$$U_{1359}(x, y) = x + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}}$$
Pyramid 1360
Preview
$$U_{1360}(x, y) = \left(y + 1\right)^{3} \sqrt{4 x \left(y + 1\right)^{2} + 1}$$
Page:
1
...
65
66
67
68
69
70
71
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less