Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1221
Preview
$$U_{1221}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}}}{4 \left(1 - x\right)^{3}}$$
Pyramid 1222
Preview
$$U_{1222}(x, y) = \frac{\left(\frac{x}{\left(1 - y\right)^{3}} + 1\right)^{2}}{\left(1 - y\right)^{3}}$$
Pyramid 1223
Preview
$$U_{1223}(x, y) = \sqrt{4 x + 1} \left(y + 1\right)^{3}$$
Pyramid 1224
Preview
$$U_{1224}(x, y) = \frac{\frac{\sin{\left(\frac{\operatorname{asin}{\left(216 y^{2} - 1 \right)}}{3} \right)}}{6 y} + \frac{1}{12 y}}{\left(1 - x\right)^{3}}$$
Pyramid 1225
Preview
$$U_{1225}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \left(\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + 1\right)^{2}}{8 y^{3}}$$
Pyramid 1226
Preview
$$U_{1226}(x, y) = \left(x + 1\right)^{2} \left(2 y + \sqrt{4 y^{2} + 1}\right)$$
Pyramid 1227
Preview
$$U_{1227}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Pyramid 1228
Preview
$$U_{1228}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}}$$
Pyramid 1229
Preview
$$U_{1229}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}} \left(x + 1\right)^{3}}{4}$$
Pyramid 1230
Preview
$$U_{1230}(x, y) = \left(y + 1\right)^{2} \left(x \left(y + 1\right)^{2} + 1\right)^{3}$$
Pyramid 1231
Preview
$$U_{1231}(x, y) = \left(y + 1\right)^{3} \left(x \left(y + 1\right)^{3} + 1\right)^{3}$$
Pyramid 1232
Preview
$$U_{1232}(x, y) = \frac{\left(\frac{x}{1 - y} + 1\right)^{3}}{1 - y}$$
Pyramid 1233
Preview
$$U_{1233}(x, y) = \frac{\left(\frac{x}{\left(1 - y\right)^{2}} + 1\right)^{3}}{\left(1 - y\right)^{2}}$$
Pyramid 1234
Preview
$$U_{1234}(x, y) = \frac{\left(\frac{x}{\left(1 - y\right)^{3}} + 1\right)^{3}}{\left(1 - y\right)^{3}}$$
Pyramid 1235
Preview
$$U_{1235}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \left(\frac{x \left(1 - \sqrt{1 - 4 y}\right)}{2 y} + 1\right)^{3}}{2 y}$$
Pyramid 1236
Preview
$$U_{1236}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2} \left(\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}} + 1\right)^{3}}{4 y^{2}}$$
Pyramid 1237
Preview
$$U_{1237}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \left(\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + 1\right)^{3}}{8 y^{3}}$$
Pyramid 1238
Preview
$$U_{1238}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2 y}$$
Pyramid 1239
Preview
$$U_{1239}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Pyramid 1240
Preview
$$U_{1240}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}}$$
Page:
1
...
59
60
61
62
63
64
65
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less