Generating function
$$U_{1289}(x, y) = \frac{2 y^{8} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}\right)^{3}}{x^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{4}}$$
Explicit formula
$$T_{1289}(n, m, k) = \frac{6 k \left(k + n\right) {\binom{3 k + 2 n - 1}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{\left(3 k + n\right) \left(2 k + m + 2 n\right)}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
3 | 24 | 132 | 624 | 273 | 11424 | 46512 |
9 | 108 | 81 | 4896 | 26163 | 129276 | 605682 |
28 | 448 | 4256 | 3136 | 198352 | 113344 | 602784 |
9 | 18 | 207 | 18 | 131625 | 855036 | 509733 |
297 | 7128 | 96228 | 964656 | 801009 | 58335552 | 385662816 |
1001 | 28028 | 434434 | 4932928 | 45860815 | 370221852 | 2689552866 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1289?