Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1301
Preview
$$U_{1301}(x, y) = \frac{\left(- 2 x \left(y + 1\right)^{2} - \sqrt{- 4 x \left(y + 1\right)^{2} + 1} + 1\right)^{2}}{4 x^{4} \left(y + 1\right)^{6}}$$
Pyramid 1302
Preview
$$U_{1302}(x, y) = \frac{\left(- 2 x \left(y + 1\right)^{3} - \sqrt{- 4 x \left(y + 1\right)^{3} + 1} + 1\right)^{2}}{4 x^{4} \left(y + 1\right)^{9}}$$
Pyramid 1303
Preview
$$U_{1303}(x, y) = \frac{\left(1 - y\right)^{3} \left(- \frac{2 x}{1 - y} - \sqrt{- \frac{4 x}{1 - y} + 1} + 1\right)^{2}}{4 x^{4}}$$
Pyramid 1304
Preview
$$U_{1304}(x, y) = \frac{\left(1 - y\right)^{6} \left(- \frac{2 x}{\left(1 - y\right)^{2}} - \sqrt{- \frac{4 x}{\left(1 - y\right)^{2}} + 1} + 1\right)^{2}}{4 x^{4}}$$
Pyramid 1305
Preview
$$U_{1305}(x, y) = \frac{\left(1 - y\right)^{9} \left(- \frac{2 x}{\left(1 - y\right)^{3}} - \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1} + 1\right)^{2}}{4 x^{4}}$$
Pyramid 1306
Preview
$$U_{1306}(x, y) = \frac{2 y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{y} - \sqrt{- \frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1} + 1\right)^{2}}{x^{4} \left(1 - \sqrt{1 - 4 y}\right)^{3}}$$
Pyramid 1307
Preview
$$U_{1307}(x, y) = \frac{16 y^{6} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{2 y^{2}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}} + 1} + 1\right)^{2}}{x^{4} \left(1 - \sqrt{1 - 4 y}\right)^{6}}$$
Pyramid 1308
Preview
$$U_{1308}(x, y) = \frac{128 y^{9} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1} + 1\right)^{2}}{x^{4} \left(1 - \sqrt{1 - 4 y}\right)^{9}}$$
Pyramid 1309
Preview
$$U_{1309}(x, y) = \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} + \sqrt{\frac{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{6}}{16 y^{6}} + 1}$$
Pyramid 1310
Preview
$$U_{1310}(x, y) = \frac{16 y^{12} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{2 y^{4}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1} + 1\right)^{2}}{x^{4} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{6}}$$
Pyramid 1311
Preview
$$U_{1311}(x, y) = \frac{128 y^{18} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1} + 1\right)^{2}}{x^{4} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{9}}$$
Pyramid 1312
Preview
$$U_{1312}(x, y) = \frac{\left(- 2 x \left(y + 1\right) - \sqrt{- 4 x \left(y + 1\right) + 1} + 1\right)^{3}}{8 x^{6} \left(y + 1\right)^{5}}$$
Pyramid 1313
Preview
$$U_{1313}(x, y) = \frac{\left(- 2 x \left(y + 1\right)^{2} - \sqrt{- 4 x \left(y + 1\right)^{2} + 1} + 1\right)^{3}}{8 x^{6} \left(y + 1\right)^{10}}$$
Pyramid 1314
Preview
$$U_{1314}(x, y) = \frac{\left(- 2 x \left(y + 1\right)^{3} - \sqrt{- 4 x \left(y + 1\right)^{3} + 1} + 1\right)^{3}}{8 x^{6} \left(y + 1\right)^{15}}$$
Pyramid 1315
Preview
$$U_{1315}(x, y) = \frac{\left(1 - y\right)^{5} \left(- \frac{2 x}{1 - y} - \sqrt{- \frac{4 x}{1 - y} + 1} + 1\right)^{3}}{8 x^{6}}$$
Pyramid 1316
Preview
$$U_{1316}(x, y) = \frac{\left(1 - y\right)^{10} \left(- \frac{2 x}{\left(1 - y\right)^{2}} - \sqrt{- \frac{4 x}{\left(1 - y\right)^{2}} + 1} + 1\right)^{3}}{8 x^{6}}$$
Pyramid 1317
Preview
$$U_{1317}(x, y) = \frac{\left(1 - y\right)^{15} \left(- \frac{2 x}{\left(1 - y\right)^{3}} - \sqrt{- \frac{4 x}{\left(1 - y\right)^{3}} + 1} + 1\right)^{3}}{8 x^{6}}$$
Pyramid 1318
Preview
$$U_{1318}(x, y) = \frac{4 y^{5} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{y} - \sqrt{- \frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1} + 1\right)^{3}}{x^{6} \left(1 - \sqrt{1 - 4 y}\right)^{5}}$$
Pyramid 1319
Preview
$$U_{1319}(x, y) = \frac{64 y^{10} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{2 y^{2}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}} + 1} + 1\right)^{3}}{5 x^{6} \left(1 - \sqrt{1 - 4 y}\right)}$$
Pyramid 1320
Preview
$$U_{1320}(x, y) = \frac{4096 y^{15} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1} + 1\right)^{3}}{x^{6} \left(1 - \sqrt{1 - 4 y}\right)^{15}}$$
Page:
1
...
63
64
65
66
67
68
69
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less