Generating function
$$U_{1300}(x, y) = \frac{\frac{\sin{\left(\frac{\operatorname{asin}{\left(216 y^{2} - 1 \right)}}{3} \right)}}{6 y} + \frac{1}{12 y}}{1 - x}$$
Explicit formula
$$T_{1300}(n, m, k) = \begin{cases}1&\text{if n=0,m=0,k=0} ,\ \\\frac{4^{m} k {\binom{\frac{k}{2} + \frac{3 m}{2} - 1}{m}}}{k + m}&\text{if k even} ,\ \\\frac{k {\binom{\frac{k}{2} + \frac{3 m}{2} - \frac{1}{2}}{m}} {\binom{k + 3 m - 1}{\frac{k}{2} + \frac{3 m}{2} - \frac{1}{2}}}}{\left(k + m\right) {\binom{k + m - 1}{\frac{k}{2} + \frac{m}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
1 | 3/2 | 1 | 42 | 462 | 9009/4 | 29172 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1300?