Generating function
$$U_{1288}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2} \sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}}{4 y^{2}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1288}(n, m, k) = \frac{\left(2 k + n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{2 k + 2 m + n - 1}{m}}}{2 k + m + n}$$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
2 | 6 | 18 | 56 | 18 | 594 | 2002 |
-2 | -8 | -28 | -96 | -330 | -1144 | -4004 |
4 | 20 | 80 | 300 | 1100 | 4004 | 14560 |
-10 | -60 | -270 | -1100 | -4290 | -16380 | -61880 |
28 | 196 | 980 | 4312 | 17836 | 71344 | 279888 |
-84 | -672 | -3696 | -17472 | -76440 | -319872 | -1302336 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1288?