Generating function
$$U_{1288}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2} \sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}}{4 y^{2}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1288}(n, m, k) = \frac{\left(2 k + n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{2 k + 2 m + n - 1}{m}}}{2 k + m + n}$$
Data table
1 2 5 14 42 132 429
2 6 18 56 18 594 2002
-2 -8 -28 -96 -330 -1144 -4004
4 20 80 300 1100 4004 14560
-10 -60 -270 -1100 -4290 -16380 -61880
28 196 980 4312 17836 71344 279888
-84 -672 -3696 -17472 -76440 -319872 -1302336
Related
Export
expand_less