Generating function
$$U_{1292}(x, y) = \left(y + 1\right)^{2} \sqrt{4 x \left(y + 1\right) + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1292}(n, m, k) = \operatorname{Tsqrt}{\left(n,k \right)} {\binom{2 k + n}{m}}$$
Data table
1 2 1 0 0 0 0
2 6 6 2 0 0 0
-2 -8 -12 -8 -2 0 0
4 20 40 40 20 4 0
-10 -60 -150 -200 -150 -60 -10
28 196 588 980 980 588 196
-84 -672 -2352 -4704 -5880 -4704 -2352
Export
expand_less