Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1241
Preview
$$U_{1241}(x, y) = \frac{1}{\left(1 - y\right)^{3} \left(- \frac{x}{\left(1 - y\right)^{3}} + 1\right)}$$
Pyramid 1242
Preview
$$U_{1242}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{y^{3}} + 8\right)}$$
Pyramid 1243
Preview
$$U_{1243}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 4\right)}$$
Pyramid 1244
Preview
$$U_{1244}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{y^{6} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{y^{6}} + 8\right)}$$
Pyramid 1245
Preview
$$U_{1245}(x, y) = \frac{\left(y + 1\right)^{2}}{\left(- x \left(y + 1\right)^{2} + 1\right)^{2}}$$
Pyramid 1246
Preview
$$U_{1246}(x, y) = \frac{\left(y + 1\right)^{3}}{\left(- x \left(y + 1\right)^{3} + 1\right)^{2}}$$
Pyramid 1247
Preview
$$U_{1247}(x, y) = \frac{1}{\left(1 - y\right)^{2} \left(- \frac{x}{\left(1 - y\right)^{2}} + 1\right)^{2}}$$
Pyramid 1248
Preview
$$U_{1248}(x, y) = \frac{1}{\left(1 - y\right)^{3} \left(- \frac{x}{\left(1 - y\right)^{3}} + 1\right)^{2}}$$
Pyramid 1249
Preview
$$U_{1249}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}} + 1\right)^{2}}$$
Pyramid 1250
Preview
$$U_{1250}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + 1\right)^{2}}$$
Pyramid 1251
Preview
$$U_{1251}(x, y) = \frac{\sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}}$$
Pyramid 1252
Preview
$$U_{1252}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{2}}$$
Pyramid 1253
Preview
$$U_{1253}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{2}}$$
Pyramid 1254
Preview
$$U_{1254}(x, y) = \left(x + 1\right)^{2} \left(\frac{\sin{\left(\frac{\operatorname{asin}{\left(216 y^{2} - 1 \right)}}{3} \right)}}{6 y} + \frac{1}{12 y}\right)$$
Pyramid 1255
Preview
$$U_{1255}(x, y) = \left(x + 1\right)^{3} \left(\frac{\sin{\left(\frac{\operatorname{asin}{\left(216 y^{2} - 1 \right)}}{3} \right)}}{6 y} + \frac{1}{12 y}\right)$$
Pyramid 1256
Preview
$$U_{1256}(x, y) = \frac{\left(y + 1\right)^{3}}{\left(- x \left(y + 1\right)^{3} + 1\right)^{3}}$$
Pyramid 1257
Preview
$$U_{1257}(x, y) = \frac{1}{\left(1 - y\right) \left(- \frac{x}{1 - y} + 1\right)^{3}}$$
Pyramid 1258
Preview
$$U_{1258}(x, y) = \frac{1}{\left(1 - y\right)^{2} \left(- \frac{x}{\left(1 - y\right)^{2}} + 1\right)^{3}}$$
Pyramid 1259
Preview
$$U_{1259}(x, y) = \left(1 - y\right)^{3} \left(- \frac{x}{\left(1 - y\right)^{3}} + 1\right)^{3}$$
Pyramid 1260
Preview
$$U_{1260}(x, y) = \frac{1 - \sqrt{1 - 4 y}}{2 y \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{2 y} + 1\right)^{3}}$$
Page:
1
...
60
61
62
63
64
65
66
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less