Generating function
$$U_{1242}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{y^{3}} + 8\right)}$$
Explicit formula
$$T_{1242}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{k + n - 1}{n}} {\binom{3 k + 2 m + 3 n - 1}{m}}}{3 k + m + 3 n}$$
1 | 3 | 9 | 28 | 9 | 297 | 1001 |
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
1 | 9 | 54 | 273 | 126 | 5508 | 23256 |
1 | 12 | 9 | 544 | 2907 | 14364 | 67298 |
1 | 15 | 135 | 95 | 5775 | 31878 | 16445 |
1 | 18 | 189 | 1518 | 1035 | 6318 | 356265 |
1 | 21 | 252 | 2275 | 17199 | 115101 | 704816 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1242?