Generating function
$$U_{1251}(x, y) = \frac{\sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1251}(n, m, k) = \frac{\left(2 k + 2 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{2 k + 2 m + 2 n - 1}{m}}}{2 k + m + 2 n}$$
Data table
1 2 5 14 42 132 429
2 8 28 96 33 1144 4004
-2 -12 -54 -220 -858 -3276 -12376
4 32 176 832 3640 15232 62016
-10 -100 -650 -3500 -17000 -77520 -339150
28 336 2520 15232 81396 402192 1884344
-84 -1176 -9996 -67032 -391020 -2082696 -10413480
Related
Export
expand_less