Generating function
$$U_{1251}(x, y) = \frac{\sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1251}(n, m, k) = \frac{\left(2 k + 2 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{2 k + 2 m + 2 n - 1}{m}}}{2 k + m + 2 n}$$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
2 | 8 | 28 | 96 | 33 | 1144 | 4004 |
-2 | -12 | -54 | -220 | -858 | -3276 | -12376 |
4 | 32 | 176 | 832 | 3640 | 15232 | 62016 |
-10 | -100 | -650 | -3500 | -17000 | -77520 | -339150 |
28 | 336 | 2520 | 15232 | 81396 | 402192 | 1884344 |
-84 | -1176 | -9996 | -67032 | -391020 | -2082696 | -10413480 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1251?