Generating function
$$U_{1244}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{y^{6} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{y^{6}} + 8\right)}$$
Explicit formula
$$T_{1244}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{k + n - 1}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{3 k + m + 3 n}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
1 | 12 | 9 | 544 | 2907 | 14364 | 67298 |
1 | 18 | 189 | 1518 | 1035 | 6318 | 356265 |
1 | 24 | 324 | 3248 | 2697 | 196416 | 1298528 |
1 | 3 | 495 | 595 | 58275 | 493506 | 374699 |
1 | 36 | 702 | 984 | 111069 | 1072764 | 9203634 |
1 | 42 | 945 | 15134 | 193452 | 209916 | 20087795 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1244?