Generating function
$$U_{1243}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 4\right)}$$
Explicit formula
$$T_{1243}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{k + n - 1}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{2 k + m + 2 n}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
1 | 8 | 44 | 208 | 91 | 3808 | 15504 |
1 | 12 | 9 | 544 | 2907 | 14364 | 67298 |
1 | 16 | 152 | 112 | 7084 | 4048 | 21528 |
1 | 2 | 23 | 2 | 14625 | 95004 | 56637 |
1 | 24 | 324 | 3248 | 2697 | 196416 | 1298528 |
1 | 28 | 434 | 4928 | 45815 | 369852 | 2686866 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1243?