Generating function
$$U_{1252}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{2}}$$
Explicit formula
$$T_{1252}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{2 k + n - 1}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{2 k + m + 2 n}$$
Data table
1 4 14 48 165 572 2002
2 16 88 416 182 7616 31008
3 36 27 1632 8721 43092 201894
4 64 608 448 28336 16192 86112
5 1 115 1 73125 47502 283185
6 144 1944 19488 16182 1178496 7791168
7 196 3038 34496 320705 2588964 18808062
Related
Export
expand_less