Generating function
$$U_{1252}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{2}}$$
Explicit formula
$$T_{1252}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{2 k + n - 1}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{2 k + m + 2 n}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
2 | 16 | 88 | 416 | 182 | 7616 | 31008 |
3 | 36 | 27 | 1632 | 8721 | 43092 | 201894 |
4 | 64 | 608 | 448 | 28336 | 16192 | 86112 |
5 | 1 | 115 | 1 | 73125 | 47502 | 283185 |
6 | 144 | 1944 | 19488 | 16182 | 1178496 | 7791168 |
7 | 196 | 3038 | 34496 | 320705 | 2588964 | 18808062 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1252?