Generating function
$$U_{1250}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + 1\right)^{2}}$$
Explicit formula
$$T_{1250}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{2 k + n - 1}{n}} {\binom{3 k + 2 m + 3 n - 1}{m}}}{3 k + m + 3 n}$$
1 | 3 | 9 | 28 | 9 | 297 | 1001 |
2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
3 | 27 | 162 | 819 | 378 | 16524 | 69768 |
4 | 48 | 36 | 2176 | 11628 | 57456 | 269192 |
5 | 75 | 675 | 475 | 28875 | 15939 | 82225 |
6 | 108 | 1134 | 9108 | 621 | 37908 | 213759 |
7 | 147 | 1764 | 15925 | 120393 | 805707 | 4933712 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1250?