Generating function
$$U_{1253}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{2}}$$
Explicit formula
$$T_{1253}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{2 k + n - 1}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{3 k + m + 3 n}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
2 | 24 | 18 | 1088 | 5814 | 28728 | 134596 |
3 | 54 | 567 | 4554 | 3105 | 18954 | 1068795 |
4 | 96 | 1296 | 12992 | 10788 | 785664 | 5194112 |
5 | 15 | 2475 | 2975 | 291375 | 246753 | 1873495 |
6 | 216 | 4212 | 5904 | 666414 | 6436584 | 55221804 |
7 | 294 | 6615 | 105938 | 1354164 | 1469412 | 140614565 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1253?