Generating function
$$U_{1262}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{8 y^{3}} + 1\right)^{3}}$$
Explicit formula
$$T_{1262}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{3 k + n - 1}{n}} {\binom{3 k + 2 m + 3 n - 1}{m}}}{3 k + m + 3 n}$$
1 | 3 | 9 | 28 | 9 | 297 | 1001 |
3 | 18 | 81 | 33 | 1287 | 4914 | 18564 |
6 | 54 | 324 | 1638 | 756 | 33048 | 139536 |
1 | 12 | 9 | 544 | 2907 | 14364 | 67298 |
15 | 225 | 2025 | 1425 | 86625 | 47817 | 246675 |
21 | 378 | 3969 | 31878 | 21735 | 132678 | 7481565 |
28 | 588 | 7056 | 637 | 481572 | 3222828 | 19734848 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1262?