Generating function
$$U_{1265}(x, y) = \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{3}}$$
Explicit formula
$$T_{1265}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{3 k + n - 1}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{3 k + m + 3 n}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
3 | 36 | 27 | 1632 | 8721 | 43092 | 201894 |
6 | 108 | 1134 | 9108 | 621 | 37908 | 213759 |
1 | 24 | 324 | 3248 | 2697 | 196416 | 1298528 |
15 | 45 | 7425 | 8925 | 874125 | 740259 | 5620485 |
21 | 756 | 14742 | 20664 | 2332449 | 22528044 | 193276314 |
28 | 1176 | 2646 | 423752 | 5416656 | 5877648 | 56245826 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1265?