Generating function
$$U_{1276}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{8 y^{3}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1276}(n, m, k) = \frac{\left(3 k + 3 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{3 k + 2 m + 3 n - 1}{m}}}{3 k + m + 3 n}$$
Data table
1 3 9 28 9 297 1001
2 12 54 22 858 3276 12376
-2 -18 -108 -546 -2520 -11016 -46512
4 48 360 2176 11628 57456 269192
-10 -150 -1350 -9500 -57750 -318780 -1644500
28 504 5292 42504 289800 1769040 9975420
-84 -1764 -21168 -191100 -1444716 -9668484 -59204544
Related
Export
expand_less