Generating function
$$U_{1276}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3} \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{8 y^{3}}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1276}(n, m, k) = \frac{\left(3 k + 3 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{3 k + 2 m + 3 n - 1}{m}}}{3 k + m + 3 n}$$
1 | 3 | 9 | 28 | 9 | 297 | 1001 |
2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
-2 | -18 | -108 | -546 | -2520 | -11016 | -46512 |
4 | 48 | 360 | 2176 | 11628 | 57456 | 269192 |
-10 | -150 | -1350 | -9500 | -57750 | -318780 | -1644500 |
28 | 504 | 5292 | 42504 | 289800 | 1769040 | 9975420 |
-84 | -1764 | -21168 | -191100 | -1444716 | -9668484 | -59204544 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1276?