Generating function
$$U_{1263}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1263}(n, m, k) = \frac{\left(k + 3 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m + 3 n - 1}{m}}}{k + m + 3 n}$$
Data table
1 1 2 5 14 42 132
2 8 28 96 33 1144 4004
-2 -14 -70 -308 -1274 -5096 -19992
4 40 260 1400 6800 31008 135660
-10 -130 -1040 -6630 -37050 -190190 -920920
28 448 4256 31360 198352 1133440 6027840
-84 -1596 -17556 -146832 -1037400 -6535620 -37906596
Related
Export
expand_less