Generating function
$$U_{1263}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1263}(n, m, k) = \frac{\left(k + 3 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m + 3 n - 1}{m}}}{k + m + 3 n}$$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
2 | 8 | 28 | 96 | 33 | 1144 | 4004 |
-2 | -14 | -70 | -308 | -1274 | -5096 | -19992 |
4 | 40 | 260 | 1400 | 6800 | 31008 | 135660 |
-10 | -130 | -1040 | -6630 | -37050 | -190190 | -920920 |
28 | 448 | 4256 | 31360 | 198352 | 1133440 | 6027840 |
-84 | -1596 | -17556 | -146832 | -1037400 | -6535620 | -37906596 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1263?