Generating function
$$U_{1271}(x, y) = \left(y + 1\right) \sqrt{4 x \left(y + 1\right) + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1271}(n, m, k) = \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + n}{m}}$$
Data table
1 1 0 0 0 0 0
2 4 2 0 0 0 0
-2 -6 -6 -2 0 0 0
4 16 24 16 4 0 0
-10 -50 -100 -100 -50 -10 0
28 168 420 560 420 168 28
-84 -588 -1764 -2940 -2940 -1764 -588
Export
expand_less