Generating function
$$U_{1271}(x, y) = \left(y + 1\right) \sqrt{4 x \left(y + 1\right) + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1271}(n, m, k) = \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + n}{m}}$$
1 | 1 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 2 | 0 | 0 | 0 | 0 |
-2 | -6 | -6 | -2 | 0 | 0 | 0 |
4 | 16 | 24 | 16 | 4 | 0 | 0 |
-10 | -50 | -100 | -100 | -50 | -10 | 0 |
28 | 168 | 420 | 560 | 420 | 168 | 28 |
-84 | -588 | -1764 | -2940 | -2940 | -1764 | -588 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1271?