Generating function
$$U_{1236}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2} \left(\frac{x \left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}} + 1\right)^{3}}{4 y^{2}}$$
Explicit formula
$$T_{1236}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{3 k}{n}} {\binom{2 k + 2 m + 2 n - 1}{m}}}{2 k + m + 2 n}$$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
3 | 12 | 42 | 144 | 495 | 1716 | 6006 |
3 | 18 | 81 | 33 | 1287 | 4914 | 18564 |
1 | 8 | 44 | 208 | 91 | 3808 | 15504 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1236?