Generating function
$$U_{1228}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}}$$
Explicit formula
$$T_{1228}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{2 k}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{3 k + m + 3 n}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
2 | 24 | 18 | 1088 | 5814 | 28728 | 134596 |
1 | 18 | 189 | 1518 | 1035 | 6318 | 356265 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1228?