Generating function
$$U_{1221}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}}}{4 \left(1 - x\right)^{3}}$$
Explicit formula
$$T_{1221}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\\frac{k {\binom{\frac{k}{2} + 2 m - \frac{1}{2}}{m}} {\binom{k + 4 m - 1}{\frac{k}{2} + 2 m - \frac{1}{2}}} {\binom{3 k + n - 1}{n}}}{\left(k + 2 m\right) {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}}}&\text{if k odd} ,\ \\\frac{4^{m} k {\binom{\frac{k}{2} + 2 m - 1}{m}} {\binom{3 k + n - 1}{n}}}{k + 2 m}&\text{if k even} \end{cases} $$
Data table
1 2 14 132 1430 16796 208012
3 6 42 396 4290 50388 624036
6 12 84 792 8580 100776 1248072
10 20 140 1320 14300 167960 2080120
15 30 210 1980 21450 251940 3120180
21 42 294 2772 30030 352716 4368252
28 56 392 3696 40040 470288 5824336
Related
Export
expand_less