Generating function
$$U_{1227}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Explicit formula
$$T_{1227}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{2 k}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{2 k + m + 2 n}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
2 | 16 | 88 | 416 | 182 | 7616 | 31008 |
1 | 12 | 9 | 544 | 2907 | 14364 | 67298 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1227?