Generating function
$$U_{1240}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}} + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{8 y^{6}}$$
Explicit formula
$$T_{1240}(n, m, k) = \frac{\left(3 k + 3 n\right) {\binom{3 k}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{3 k + m + 3 n}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
3 | 36 | 27 | 1632 | 8721 | 43092 | 201894 |
3 | 54 | 567 | 4554 | 3105 | 18954 | 1068795 |
1 | 24 | 324 | 3248 | 2697 | 196416 | 1298528 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1240?