Generating function
$$U_{1238}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1238}(n, m, k) = \frac{\left(k + 2 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m + 2 n - 1}{m}}}{k + m + 2 n}$$
Data table
1 1 2 5 14 42 132
2 6 18 56 18 594 2002
-2 -10 -40 -150 -550 -2002 -7280
4 28 140 616 2548 10192 39984
-10 -90 -540 -2730 -12600 -55080 -232560
28 308 2156 12320 62832 298452 1351812
-84 -1092 -8736 -55692 -311220 -1597596 -7735728
Related
Export
expand_less