Generating function
$$U_{1238}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1238}(n, m, k) = \frac{\left(k + 2 n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m + 2 n - 1}{m}}}{k + m + 2 n}$$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
2 | 6 | 18 | 56 | 18 | 594 | 2002 |
-2 | -10 | -40 | -150 | -550 | -2002 | -7280 |
4 | 28 | 140 | 616 | 2548 | 10192 | 39984 |
-10 | -90 | -540 | -2730 | -12600 | -55080 | -232560 |
28 | 308 | 2156 | 12320 | 62832 | 298452 | 1351812 |
-84 | -1092 | -8736 | -55692 | -311220 | -1597596 | -7735728 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1238?