Generating function
$$U_{1239}(x, y) = \frac{\left(\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}} + 1\right)^{3} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}$$
Explicit formula
$$T_{1239}(n, m, k) = \frac{\left(2 k + 2 n\right) {\binom{3 k}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{2 k + m + 2 n}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
3 | 24 | 132 | 624 | 273 | 11424 | 46512 |
3 | 36 | 27 | 1632 | 8721 | 43092 | 201894 |
1 | 16 | 152 | 112 | 7084 | 4048 | 21528 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1239?