Generating function
$$U_{1309}(x, y) = \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} + \sqrt{\frac{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{6}}{16 y^{6}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1309}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0} ,\ \\\frac{3 n \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{2 m + 3 n - 1}{m}}}{m + 3 n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 6 | 18 | 56 | 18 | 594 | 2002 |
2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -24 | -180 | -1088 | -5814 | -28728 | -134596 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 72 | 756 | 6072 | 41400 | 252720 | 1425060 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1309?