Generating function
$$U_{1311}(x, y) = \frac{128 y^{18} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1} + 1\right)^{2}}{x^{4} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{9}}$$
Explicit formula
$$T_{1311}(n, m, k) = \frac{6 k \left(k + n\right) {\binom{4 k + 2 n}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{\left(2 k + n\right) \left(3 k + m + 3 n\right)}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
4 | 48 | 36 | 2176 | 11628 | 57456 | 269192 |
14 | 252 | 2646 | 21252 | 1449 | 88452 | 498771 |
48 | 1152 | 15552 | 155904 | 129456 | 9427968 | 62329344 |
165 | 495 | 81675 | 98175 | 9615375 | 8142849 | 61825335 |
572 | 20592 | 401544 | 562848 | 63531468 | 613621008 | 5264478648 |
2002 | 84084 | 189189 | 30298268 | 387290904 | 420251832 | 4021576559 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1311?