Generating function
$$U_{1320}(x, y) = \frac{4096 y^{15} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1} + 1\right)^{3}}{x^{6} \left(1 - \sqrt{1 - 4 y}\right)^{15}}$$
Explicit formula
$$T_{1320}(n, m, k) = \frac{9 k \left(k + n\right) {\binom{6 k + 2 n}{n}} {\binom{3 k + 2 m + 3 n - 1}{m}}}{\left(3 k + n\right) \left(3 k + m + 3 n\right)}$$
1 | 3 | 9 | 28 | 9 | 297 | 1001 |
6 | 36 | 162 | 66 | 2574 | 9828 | 37128 |
27 | 243 | 1458 | 7371 | 3402 | 148716 | 627912 |
11 | 132 | 99 | 5984 | 31977 | 158004 | 740278 |
429 | 6435 | 57915 | 40755 | 2477475 | 13675662 | 7054905 |
1638 | 29484 | 309582 | 2486484 | 169533 | 10348884 | 58356207 |
6188 | 129948 | 1559376 | 140777 | 106427412 | 712244988 | 4361401408 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1320?