Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 681
Preview
$$U_{681}(x, y) = \frac{\sqrt{\frac{4 x}{\sqrt{1 - 4 y}} + 1}}{2} + \frac{1}{2}$$
Pyramid 682
Preview
$$U_{682}(x, y) = \frac{1 - \sqrt{\frac{4 x}{\sqrt{1 - 4 y}} + 1}}{2 x}$$
Pyramid 683
Preview
$$U_{683}(x, y) = \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}} + 1$$
Pyramid 684
Preview
$$U_{684}(x, y) = \frac{\sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2} + \frac{1}{2}$$
Pyramid 685
Preview
$$U_{685}(x, y) = \frac{1 - \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2 x}$$
Pyramid 686
Preview
$$U_{686}(x, y) = \frac{x \left(\sqrt{4 y + 1} + 1\right)}{2} + 1$$
Pyramid 687
Preview
$$U_{687}(x, y) = \frac{\sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + 1}}{2} + \frac{1}{2}$$
Pyramid 688
Preview
$$U_{688}(x, y) = \frac{1 - \sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + 1}}{2 x}$$
Pyramid 689
Preview
$$U_{689}(x, y) = \frac{2 \sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + 1$$
Pyramid 690
Preview
$$U_{690}(x, y) = \frac{\sqrt{\frac{8 \sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + 1}}{2} + \frac{1}{2}$$
Pyramid 691
Preview
$$U_{691}(x, y) = \frac{1 - \sqrt{\frac{8 \sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + 1}}{2 x}$$
Pyramid 692
Preview
$$U_{692}(x, y) = x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + 1$$
Pyramid 693
Preview
$$U_{693}(x, y) = \frac{\sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + 1}}{2} + \frac{1}{2}$$
Pyramid 694
Preview
$$U_{694}(x, y) = \frac{1 - \sqrt{4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) + 1}}{2 x}$$
Pyramid 695
Preview
$$U_{695}(x, y) = \frac{1}{- \frac{x}{\left(1 - y\right)^{2}} + 1}$$
Pyramid 696
Preview
$$U_{696}(x, y) = \frac{\left(1 - y\right)^{2} \left(1 - \sqrt{- \frac{4 x}{\left(1 - y\right)^{2}} + 1}\right)}{2 x}$$
Pyramid 697
Preview
$$U_{697}(x, y) = \frac{\left(y + 1\right)^{3}}{- x \left(y + 1\right)^{2} + 1}$$
Pyramid 698
Preview
$$U_{698}(x, y) = \frac{y \left(1 - \sqrt{- \frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}\right)}{x \left(1 - \sqrt{1 - 4 y}\right)}$$
Pyramid 699
Preview
$$U_{699}(x, y) = \frac{y^{2} \left(1 - \sqrt{- \frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}\right)}{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}$$
Pyramid 700
Preview
$$U_{700}(x, y) = \frac{1}{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{2 y^{2}} + 1}$$
Page:
1
...
32
33
34
35
36
37
38
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less