Generating function
$$U_{688}(x, y) = \frac{1 - \sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + 1}}{2 x}$$
Explicit formula
$$T_{688}(n, m, k) = \begin{cases}\frac{\left(-1\right)^{- k + n} k {\binom{k + 2 n - 1}{k + n - 1}}}{k + n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{- k + n} \left(-1\right)^{m - 1} k {\binom{k + 2 n - 1}{k + n - 1}} {\binom{- k + 2 m - n - 1}{m - 1}}}{m} \end{cases} $$
-1 | -1 | 1 | -2 | 5 | -14 | 42 |
1 | 2 | -1 | 2 | -5 | 14 | -42 |
-2 | -6 | 0 | -2 | 6 | -18 | 56 |
5 | 2 | 1 | 0 | -5 | 2 | -7 |
-14 | -7 | -7 | 0 | 0 | -14 | 7 |
42 | 252 | 378 | 84 | 0 | 0 | -42 |
-132 | -924 | -1848 | -924 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #688?