Generating function
$$U_{687}(x, y) = \frac{\sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{687}(n, m, k) = \begin{cases}1&\text{if n=0, m=0} ,\ \\\frac{k {\binom{k - n - 1}{n - 1}}}{n}&\text{if m=0, n>0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{k - n - 1}{n - 1}} {\binom{2 m - n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | -1 | 2 | -5 | 14 | -42 |
-1 | -2 | 1 | -2 | 5 | -14 | 42 |
2 | 6 | 0 | 2 | -6 | 18 | -56 |
-5 | -2 | -1 | 0 | 5 | -2 | 7 |
14 | 7 | 7 | 0 | 0 | 14 | -7 |
-42 | -252 | -378 | -84 | 0 | 0 | 42 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #687?