Generating function
$$U_{699}(x, y) = \frac{y^{2} \left(1 - \sqrt{- \frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}\right)}{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}$$
Explicit formula
$$T_{699}(n, m, k) = \begin{cases}1&\text{if n+m=0} ,\ \\\frac{k n {\binom{2 m + 2 n}{m}} {\binom{k + 2 n - 1}{n}}}{\left(k + n\right) \left(m + n\right)} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | 5 | 14 | 42 | 132 | 429 |
2 | 8 | 28 | 96 | 330 | 1144 | 4004 |
5 | 30 | 135 | 550 | 2145 | 8190 | 30940 |
14 | 112 | 616 | 2912 | 12740 | 53312 | 217056 |
42 | 420 | 2730 | 14700 | 71400 | 325584 | 1424430 |
132 | 1584 | 11880 | 71808 | 383724 | 1896048 | 8883336 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #699?