Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 641
Preview
$$U_{641}(x, y) = \frac{\sqrt{4 y + 1} + 1}{2 \sqrt{1 - 4 x}}$$
Pyramid 642
Preview
$$U_{642}(x, y) = 2 x + \sqrt{4 x^{2} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}$$
Pyramid 643
Preview
$$U_{643}(x, y) = 2 x - \sqrt{4 x^{2} + \frac{\left(\sqrt{4 y + 1} + 1\right)^{2}}{4}}$$
Pyramid 644
Preview
$$U_{644}(x, y) = \frac{- \sqrt{4 y + 1} - 1}{x \sqrt{4 y + 1} + x - 2}$$
Pyramid 645
Preview
$$U_{645}(x, y) = \frac{1 - \sqrt{- 4 x y - 2 x \sqrt{4 y + 1} - 2 x + 1}}{x \sqrt{4 y + 1} + x}$$
Pyramid 646
Preview
$$U_{646}(x, y) = \frac{\left(x + 1\right)^{2} \left(\sqrt{4 y + 1} + 1\right)}{2}$$
Pyramid 647
Preview
$$U_{647}(x, y) = \frac{- x \sqrt{4 y + 1} - x - \sqrt{- 2 x \sqrt{4 y + 1} - 2 x + 1} + 1}{x^{2} \sqrt{4 y + 1} + x^{2}}$$
Pyramid 648
Preview
$$U_{648}(x, y) = \frac{\left(\sqrt{4 x + 1} + 1\right) \left(\sqrt{4 y + 1} + 1\right)}{4}$$
Pyramid 649
Preview
$$U_{649}(x, y) = \frac{x \left(\sqrt{4 y + 1} + 1\right)^{2}}{4} + \frac{\sqrt{4 y + 1}}{2} + \frac{1}{2}$$
Pyramid 650
Preview
$$U_{650}(x, y) = \frac{- \sqrt{4 y + 1} - 1}{\frac{x \left(\sqrt{4 y + 1} + 1\right)^{2}}{2} - 2}$$
Pyramid 651
Preview
$$U_{651}(x, y) = \frac{2 - 2 \sqrt{- \frac{x \left(\sqrt{4 y + 1} + 1\right)^{3}}{2} + 1}}{x \left(\sqrt{4 y + 1} + 1\right)^{2}}$$
Pyramid 652
Preview
$$U_{652}(x, y) = \frac{\sqrt{3} \left(\sqrt{4 x + 1} + 1\right) \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}}$$
Pyramid 653
Preview
$$U_{653}(x, y) = \frac{4 x \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 y} + \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}}$$
Pyramid 654
Preview
$$U_{654}(x, y) = - \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y} \left(\frac{4 x \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 y} - 1\right)}$$
Pyramid 655
Preview
$$U_{655}(x, y) = \frac{y \left(3 - 3 \sqrt{- \frac{32 \sqrt{3} x \sin^{3}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 y^{\frac{3}{2}}} + 1}\right)}{8 x \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}$$
Pyramid 656
Preview
$$U_{656}(x, y) = \frac{\left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right) \left(\sqrt{4 x + 1} + 1\right)}{2}$$
Pyramid 657
Preview
$$U_{657}(x, y) = x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2} - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} + 1$$
Pyramid 658
Preview
$$U_{658}(x, y) = \frac{\frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3} - 1}{x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2} - 1}$$
Pyramid 659
Preview
$$U_{659}(x, y) = \frac{1 - \sqrt{- 4 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{3} + 1}}{2 x \left(1 - \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{- y}}{2} \right)}}{3} \right)}}{3}\right)^{2}}$$
Pyramid 660
Preview
$$U_{660}(x, y) = \frac{\sqrt{4 x + 1} + 1}{2 \sqrt{1 - 4 y}}$$
Page:
1
...
30
31
32
33
34
35
36
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less