Generating function
$$U_{685}(x, y) = \frac{1 - \sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2 x}$$
Explicit formula
$$T_{685}(n, m, k) = \frac{\left(-1\right)^{- k + n} k {\binom{k + 2 n - 1}{k + n - 1}} {\binom{2 k + 2 m + 2 n}{m}}}{k + m + n}$$
-1 | -2 | -5 | -14 | -42 | -132 | -429 |
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
-2 | -12 | -54 | -22 | -858 | -3276 | -12376 |
5 | 4 | 22 | 104 | 455 | 1904 | 7752 |
-14 | -14 | -91 | -49 | -238 | -108528 | -47481 |
42 | 504 | 378 | 22848 | 122094 | 603288 | 2826516 |
-132 | -1848 | -15708 | -105336 | -61446 | -3272808 | -1636404 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #685?