Generating function
$$U_{684}(x, y) = \frac{\sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{684}(n, m, k) = \begin{cases}1&\text{if n+m=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{2 m + 2 n}{m}} {\binom{- k + 2 n - 1}{n - 1}}}{m + n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | 5 | 14 | 42 | 132 | 429 |
-1 | -4 | -14 | -48 | -165 | -572 | -2002 |
2 | 12 | 54 | 22 | 858 | 3276 | 12376 |
-5 | -4 | -22 | -104 | -455 | -1904 | -7752 |
14 | 14 | 91 | 49 | 238 | 108528 | 47481 |
-42 | -504 | -378 | -22848 | -122094 | -603288 | -2826516 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #684?