Generating function
$$U_{682}(x, y) = \frac{1 - \sqrt{\frac{4 x}{\sqrt{1 - 4 y}} + 1}}{2 x}$$
Explicit formula
$$T_{682}(n, m, k) = \frac{\left(-1\right)^{- k + n} 4^{m} k {\binom{k + 2 n - 1}{k + n - 1}} {\binom{\frac{k}{2} + m + \frac{n}{2} - 1}{m}}}{k + n}$$
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 4 | 16 | 64 | 256 | 1024 | 4096 |
-2 | -8 | -32 | -128 | -512 | -2048 | -8192 |
5 | 4 | 24 | 128 | 64 | 3072 | 14336 |
-14 | -112 | -672 | -3584 | -1792 | -86016 | -401408 |
42 | 504 | 4032 | 2688 | 16128 | 903168 | 4816896 |
-132 | -1584 | -12672 | -8448 | -50688 | -2838528 | -15138816 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #682?