Generating function
$$U_{690}(x, y) = \frac{\sqrt{\frac{8 \sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$T_{690}(n, m, k) = \begin{cases}1&\text{if m+n=0 } ,\ \\\frac{k {\binom{k - n - 1}{n - 1}} {\binom{3 m + n - 1}{m}}}{2 m + n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 3 | 12 | 55 | 273 | 1428 |
-1 | -2 | -7 | -3 | -143 | -728 | -3876 |
2 | 6 | 24 | 11 | 546 | 2856 | 15504 |
-5 | -2 | -9 | -44 | -2275 | -1224 | -6783 |
14 | 7 | 35 | 182 | 98 | 54264 | 30723 |
-42 | -252 | -1386 | -7644 | -4284 | -244188 | -1413258 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #690?