Generating function
$$U_{1323}(x, y) = \frac{4096 y^{30} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1} + 1\right)^{3}}{x^{6} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{15}}$$
Explicit formula
$$T_{1323}(n, m, k) = \frac{9 k \left(k + n\right) {\binom{6 k + 2 n}{n}} {\binom{6 k + 2 m + 6 n}{m}}}{\left(3 k + n\right) \left(3 k + m + 3 n\right)}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
6 | 72 | 54 | 3264 | 17442 | 86184 | 403788 |
27 | 486 | 5103 | 40986 | 27945 | 170586 | 9619155 |
11 | 264 | 3564 | 35728 | 29667 | 2160576 | 14283808 |
429 | 1287 | 212355 | 255255 | 24999975 | 211714074 | 160745871 |
1638 | 58968 | 1149876 | 1611792 | 181931022 | 1757187432 | 15075552492 |
6188 | 259896 | 584766 | 93649192 | 1197080976 | 1298960208 | 12430327546 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1323?