Generating function
$$U_{1322}(x, y) = \frac{128 y^{20} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{2 y^{4}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1} + 1\right)^{3}}{x^{6} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{10}}$$
Explicit formula
$$T_{1322}(n, m, k) = \frac{6 k \left(k + n\right) {\binom{6 k + 2 n}{n}} {\binom{4 k + 2 m + 4 n}{m}}}{\left(3 k + n\right) \left(2 k + m + 2 n\right)}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
6 | 48 | 264 | 1248 | 546 | 22848 | 93024 |
27 | 324 | 243 | 14688 | 78489 | 387828 | 1817046 |
11 | 176 | 1672 | 1232 | 77924 | 44528 | 236808 |
429 | 858 | 9867 | 858 | 6274125 | 40756716 | 24297273 |
1638 | 39312 | 530712 | 5320224 | 4417686 | 321729408 | 2126988864 |
6188 | 173264 | 2685592 | 30494464 | 28350322 | 2288644176 | 16626326808 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1322?