Generating function
$$U_{1321}(x, y) = \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{4}}{8 y^{4}} + \sqrt{\frac{x^{2} \left(1 - \sqrt{1 - 4 y}\right)^{8}}{64 y^{8}} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1321}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0} ,\ \\\frac{4 n \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{2 m + 4 n - 1}{m}}}{m + 4 n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 8 | 28 | 96 | 33 | 1144 | 4004 |
2 | 16 | 88 | 416 | 182 | 7616 | 31008 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -32 | -304 | -2240 | -14168 | -80960 | -430560 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 96 | 1296 | 12992 | 107880 | 785664 | 5194112 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1321?