Generating function
$$U_{645}(x, y) = \frac{1 - \sqrt{- 4 x y - 2 x \sqrt{4 y + 1} - 2 x + 1}}{x \sqrt{4 y + 1} + x}$$
Explicit formula
$$T_{645}(n, m, k) = \begin{cases}\frac{k {\binom{k + 2 n - 1}{n}}}{k + n}&\text{if m==0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{k + 2 n}{n}} {\binom{- k + 2 m - 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
| 1 | 1 | -1 | 2 | -5 | 14 | -42 |
| 1 | 3 | 0 | 1 | -3 | 9 | -28 |
| 2 | 1 | 1 | 0 | 0 | 2 | -1 |
| 5 | 35 | 7 | 35 | 0 | 0 | 0 |
| 14 | 126 | 378 | 42 | 126 | 0 | 0 |
| 42 | 462 | 1848 | 3234 | 231 | 462 | 0 |
| 132 | 1716 | 858 | 20592 | 24024 | 12012 | 1716 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #645?